版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一個正方體的平面展開圖,在這個正方體中①②③與為異面直線④以上四個命題中,正確的序號是()A.①②③ B.②④ C.③④ D.②③④2.已知下列各命題:①兩兩相交且不共點的三條直線確定一個平面:②若真線不平行于平面,則直線與平面有公共點:③若兩個平面垂直,則一個平面內的已知直線必垂直于另一個平面的無數(shù)條直線:④若兩個二面角的兩個面分別對應垂直,則這兩個二面角相等或互補.則其中正確的命題共有()個A. B. C. D.3.對于復數(shù),定義映射.若復數(shù)在映射作用下對應復數(shù),則復數(shù)在復平面內對應的點位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.是邊AB上的中點,記,,則向量()A. B.C. D.5.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.如圖,中,分別是邊的中點,與相交于點,則(
)A. B.C. D.7.如圖是一個邊長為3的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內隨機投擲1089個點,其中落入白色部分的有484個點,據(jù)此可估計黑色部分的面積為()A.4 B.5 C.8 D.98.已知直線與圓C相切于點,且圓C的圓心在y軸上,則圓C的標準方程為()A. B.C. D.9.某市家庭煤氣的使用量和煤氣費(元)滿足關系,已知某家庭今年前三個月的煤氣費如下表:月份用氣量煤氣費一月份元二月份元三月份元若四月份該家庭使用了的煤氣,則其煤氣費為()元A. B. C. D.10.已知數(shù)列滿足,為其前項和,則不等式的的最大值為()A.7 B.8 C.9 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是________.12.關于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關于點對稱;④y=f(x)的圖象關于直線x=﹣對稱.其中正確的命題的序號是.13.已知,,則______,______.14.已知一組樣本數(shù)據(jù),且,平均數(shù),則該組數(shù)據(jù)的標準差為__________.15.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.16.設無窮等比數(shù)列的公比為,若,則__________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,前項的和為,且滿足數(shù)列是公差為的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若恒成立,求的取值范圍.18.如圖,已知矩形中,,,M是以為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面.(1)求證:平面平面;(2)當四棱錐的體積最大時,求與所成的角19.已知公差的等差數(shù)列的前項和為,且滿足,.(1)求數(shù)列的通項公式;(2)求證:是數(shù)列中的項;(3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,,為遞增的等比數(shù)列,求的值所構成的集合.20.設向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.21.設是一個公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項的和,令,求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
作出直觀圖,根據(jù)正方體的結構特征進行判斷.【詳解】作出正方體得到直觀圖如圖所示:由直觀圖可知,與為互相垂直的異面直線,故①不正確;,故②正確;與為異面直線,故③正確;由正方體性質可知平面,故,故④正確.故選:D【點睛】本題考查了正方體的結構特征,直線,平面的平行于垂直,屬于基礎題.2、B【解析】
①利用平面的基本性質判斷.②利用直線與平面的位置關系判斷.③由面面垂直的性質定理判斷.④通過舉反例來判斷.【詳解】①兩兩相交且不共點,形成三個不共線的點,確定一個平面,故正確.②若真線不平行于平面,則直線與平面相交或在平面內,所以有公共點,故正確.③若兩個平面垂直,則一個平面內,若垂直交線的直線則垂直另一個平面,垂直另一平面內所有直線,若不垂直與交線,也與另一平面內垂直交線的直線及其平行線垂直,也有無數(shù)條,故正確.④若兩個二面角的兩個面分別對應垂直,則這兩個二面角關系不確定,如圖:在正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個半平面就是分別對應垂直的,但是這兩個二面角既不相等,也不互補.故錯誤..故選:B【點睛】本題主要考查了點、線、面的位置關系,還考查了推理論證和理解辨析的能力,屬于基礎題.3、A【解析】,對應點,在第四象限.4、C【解析】由題意得,∴.選C.5、C【解析】
本題首先要明確平面直角坐標系中每一象限所對應的角的范圍,然后即可判斷出在哪一象限中.【詳解】第一象限所對應的角為;第二象限所對應的角為;第三象限所對應的角為;第四象限所對應的角為;因為,所以位于第三象限,故選C.【點睛】本題考查如何判斷角所在象限,能否明確每一象限所對應的角的范圍是解決本題的關鍵,考查推理能力,是簡單題.6、C【解析】
利用向量的加減法的法則,利用是的重心,進而得出,再利用向量的加減法的法則,即可得出答案.【詳解】由題意,點分別是邊的中點,與相交于點,所以是的重心,則,又因為,所以故答案為C【點睛】本題主要考查了向量的線性運算,以及三角形重心的性質,其中解答中熟記三角形重心的性質,以及向量的線性運算法則是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、B【解析】
由幾何概型中的隨機模擬試驗可得:,將正方形面積代入運算即可.【詳解】由題意在正方形區(qū)域內隨機投擲1089個點,其中落入白色部分的有484個點,則其中落入黑色部分的有605個點,由隨機模擬試驗可得:,又,可得,故選B.【點睛】本題主要考查幾何概型概率公式以及模擬實驗的基本應用,屬于簡單題,求不規(guī)則圖形的面積的主要方法就是利用模擬實驗,列出未知面積與已知面積之間的方程求解.8、C【解析】
先代入點可得,再根據(jù)斜率關系列式可得圓心坐標,然后求出半徑,寫出標準方程.【詳解】將切點代入切線方程可得:,解得,設圓心為,所以,解得,所以圓的半徑,所以圓的標準方程為.故選:.【點睛】本題考查了直線與圓的位置關系,屬中檔題.9、C【解析】由題意得:C=4,將(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20時:f(20)=4+(20﹣5)=11.5.故選:C.點睛:這是函數(shù)的實際應用題型,根據(jù)題目中的條件和已知點得到分段函數(shù)的未知量的值,首先得到函數(shù)表達式,再根據(jù)題意讓求自變量為20時的函數(shù)值,求出即可。實際應用題型,一般是先根據(jù)題意構建模型,列出表達式,根據(jù)條件求解問題即可。10、B【解析】
由題意,整理得出是一個首項為12,公比為的等比數(shù)列,從而求出,再求出其前項和,然后再求出的表達式,再代入數(shù)驗證出的最大值即可.【詳解】由可得,即,所以數(shù)列是等比數(shù)列,又,所以,故,解得,(),所以的最大值為8.選B.【點睛】本題考查數(shù)列的遞推式以及數(shù)列求和的方法分組求和,屬于數(shù)列中的綜合題,考查了轉化的思想,構造的意識,本題難度較大,思維能力要求高.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關系即可求解.【詳解】因為函數(shù),當時是單調減函數(shù)當時,;當時,所以在上的值域為根據(jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域為故答案為:【點睛】本題求一個反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質和反函數(shù)的性質等知識,屬于基礎題.12、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關于點對稱,③正確④不正確;故答案為①③.13、【解析】
由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點睛】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.14、11【解析】
根據(jù)題意,利用方差公式計算可得數(shù)據(jù)的方差,進而利用標準差公式可得答案.【詳解】根據(jù)題意,一組樣本數(shù)據(jù),且,平均數(shù),則其方差,則其標準差,故答案為:11.【點睛】本題主要考查平均數(shù)、方差與標準差,屬于基礎題.樣本方差,標準差.15、【解析】如圖過點作,,則四邊形是一個內角為45°的平行四邊形且,中,,則對應可得四邊形是矩形且,是直角三角形,.所以16、【解析】
由可知,算出用表示的極限,再利用性質計算得出即可.【詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時當時,求和極限為,所以,故,所以,故,又,故.故答案為:.【點睛】本題主要考查等比數(shù)列求和公式,當時.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意求出數(shù)列的通項公式,可解出,從而得出數(shù)列的通項公式;(2)將數(shù)列的通項公式裂項,利用裂項法求出,由得出,然后利用定義法判斷出數(shù)列的單調性,求出數(shù)列的最小項,從而得出實數(shù)的取值范圍.【詳解】(1)因為,所以,又因為數(shù)列是公差為的等差數(shù)列,所以,即;(2)因為,所以.于是,即為,整理可得.設,則.令,解得,,所以,,故數(shù)列的最大項的值為,故,因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列通項公式的求解,同時也考查了裂項求和法以及數(shù)列不等式恒成立求參數(shù),解題時利用參變量分離法轉化為新數(shù)列的最值問題求解,同時也考查利用定義法判斷數(shù)列的單調性,考查分析問題和解決問題的能力,屬于中等題.18、(1)證明見解析(2)【解析】
(1)證明,得到平面,得到答案.(2)過點M作于點E,當M為半圓弧的中點時,四棱錐的體積最大,作于F,連接,與所成的角即與所成的角,計算得到答案.【詳解】(1)為直徑,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)過點M作于點E,∵平面平面,平面,即為四棱錐的高,又底面面積為定值.所以當M為半圓弧的中點時,四棱錐的體積最大.作于F,連接,,與所成的角即與所成的角.在直角中,,,所以.,故與所成的角為.【點睛】本題考查了面面垂直,體積的最值,異面直線夾角,意在考查學生的空間想象能力和計算能力.19、(1);(2)證明見解析;(3)見解析【解析】
(1)根據(jù)等差數(shù)列性質,結合求得等再求的通項公式.
(2)先求出,再證明滿足的通項公式.
(3)由數(shù)列,,為遞增的等比數(shù)列可得,從而根據(jù)的通項公式求的值所構成的集合.【詳解】(1)因為為等差數(shù)列,故,故或,又公差,所以,故,故.
(2)由可得,故,若是數(shù)列中的項,則即,即,故是數(shù)列中的項;(3)由數(shù)列,,為遞增的等比數(shù)列,則即.由題意存在正整數(shù)使得等式成立,因為,故能被5整除,設,則,又為整數(shù),故為整數(shù)設,即,故,解得,又,故,不妨設,則.即又當時,由得滿足條件.綜上所述,.【點睛】(1)本題考查等差數(shù)列性質:若是等差數(shù)列,且,則(2)證明數(shù)列中是否滿足某項或者存在正整數(shù)使得某三項為等比數(shù)列時,均先根據(jù)條件列出對應的表達式,再利用正整數(shù)的性質進行判斷,有一定的難度.20、(1);(2).【解析】
(1)計算出的坐標,然后利用共線向量的坐標表示列出等式求出實數(shù)的值;(2)求出和,從而可得出在方向上的投影為.【詳解】(1),,,,,,解得;(2),,在方向上的投影.【點睛】本題考查平面向量的坐標運算,考查共線向量的坐標運算以及投影的計算,在解題時要弄清楚這些知識點的定義以及坐標運算律,考查計算能力,屬于中等題.21、(1);(2)答案不唯一,詳見解析.【解析】
(1)運用等差中項性質和等比數(shù)列的通項公式,解方程可得公比;(2)討論公比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京警察學院《Premiere 視頻編輯》2024 - 2025 學年第一學期期末試卷
- 鄉(xiāng)鎮(zhèn)國土空間規(guī)劃文本
- 護理法律法規(guī)知識課件
- 2026年虛擬現(xiàn)實技術在教育領域的實踐報告及未來五至十年教育創(chuàng)新報告
- 新生兒常見意外傷害預防
- 【北師大版】初中生物學八年級上冊 期末評估測試卷二(含答案)
- 全期護理的成本效益分析
- 2026年及未來5年中國鍛造件行業(yè)市場深度分析及發(fā)展前景預測報告
- 基于生物識別技術的智能門禁與身份驗證系統(tǒng)開發(fā)課題報告教學研究課題報告
- 2025年物聯(lián)網(wǎng)在智能家居報告
- 2023-2024學年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2025年貴州省輔警考試真題附答案解析
- 半導體廠務項目工程管理 課件 項目6 凈化室系統(tǒng)的設計與維護
- 防護網(wǎng)施工專項方案
- 2026年及未來5年市場數(shù)據(jù)中國聚甲醛市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- TCFLP0030-2021國有企業(yè)網(wǎng)上商城采購交易操作規(guī)范
- 2025廣東省佛山市南海公證處招聘公證員助理4人(公共基礎知識)測試題附答案解析
- (支行)2025年工作總結和2026年工作計劃匯報
- 社會工作本科畢業(yè)論文
- 2025年秋統(tǒng)編版(新教材)初中歷史七年級第一學期期末模擬試題及答案
評論
0/150
提交評論