高數(shù) 微分方程應(yīng)用_第1頁
高數(shù) 微分方程應(yīng)用_第2頁
高數(shù) 微分方程應(yīng)用_第3頁
高數(shù) 微分方程應(yīng)用_第4頁
高數(shù) 微分方程應(yīng)用_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高數(shù)微分方程應(yīng)用1第一頁,共三十三頁,2022年,8月28日例7.2.1求微分方程的通解解:分離變量兩邊積分得所以例7.2.2求初值問題的特解.解:將已給方程分離變量兩邊積分得將代入得所以特解為2第二頁,共三十三頁,2022年,8月28日補充例題:1.解:當(dāng)時,是方程的解.是奇解當(dāng)時,分離變量兩邊積分得3第三頁,共三十三頁,2022年,8月28日2.在化學(xué)動力學(xué)中,用單位時間內(nèi)反應(yīng)物濃度的減少量或反應(yīng)生成物的增加量表示反應(yīng)速度,若反應(yīng)速度與當(dāng)時反應(yīng)物的濃度成正比,則稱為一級反應(yīng).設(shè)在時刻反應(yīng)物的濃度為,初始濃度為,求反應(yīng)物濃度隨時間的變化規(guī)律.解:依題意列出微分方程分離變量得通解當(dāng)時,初始濃度為得時間為半衰期.4第四頁,共三十三頁,2022年,8月28日2.齊次微分方程:方程的解法:通常是通過變換,把齊次方程化為可分離變量微分方程,求解.是的連續(xù)函數(shù)()定義:形如的微分方程稱為齊次方程.┄(7.2.2)令代入(7.2.2)式得分離變量積分得5第五頁,共三十三頁,2022年,8月28日例7.2.3解方程解:原方程可寫為設(shè)兩端積分令得或6第六頁,共三十三頁,2022年,8月28日解:令得兩邊積分得所以通解為例7.2.4求方程的解7第七頁,共三十三頁,2022年,8月28日定義:形如的方程稱為一階線性微分方程.當(dāng)時,稱為一階線性齊次方程.當(dāng)時,稱為一階線性非齊次方程.一階線性齊次微分方程的通解:分離變量兩邊積分所以通解為(為任意常數(shù))3.一階線性微分方程8第八頁,共三十三頁,2022年,8月28日積分得是的一個函數(shù),所以令其等于則非齊次微分方程的通解為一階線性非齊次微分方程的通解:在的兩邊同時除以得9第九頁,共三十三頁,2022年,8月28日“常數(shù)變易法”通常把齊次方程通解中任意常數(shù)變易為待定函數(shù)的求解方法,稱為常數(shù)變易法.求設(shè)是方程的解─①10第十頁,共三十三頁,2022年,8月28日代入①式得所以非齊次方程的通解為11第十一頁,共三十三頁,2022年,8月28日例7.2.5解方程解法1:“用常數(shù)變易法”先解對應(yīng)的齊次方程齊次方程的通解:代入方程得用常數(shù)變易法設(shè)或所以原方程的通解為12第十二頁,共三十三頁,2022年,8月28日解法2:通解為13第十三頁,共三十三頁,2022年,8月28日例7.2.6求的通解(以為未知函數(shù)的一階線性非齊次方程.)方程的通解為解:14第十四頁,共三十三頁,2022年,8月28日伯努利方程的解法:將方程的兩邊同除以得令則4.伯努利方程定義:形如的方程稱為伯努利方程.其中為常數(shù).當(dāng)時,為可分離變量微分方程.當(dāng)時,為一階線性非齊次微分方程.15第十五頁,共三十三頁,2022年,8月28日代入方程得是以為未知函數(shù)的一階線性非齊次微分方程.代入通解即可.16第十六頁,共三十三頁,2022年,8月28日例7.2.7求方程的通解.解:方程兩邊同除以得令代入上式得方程的通解為原方程的通解為17第十七頁,共三十三頁,2022年,8月28日例題:一容器內(nèi)盛有清水90升,現(xiàn)將每升含鹽量為4克的鹽水以每分鐘6升的速率注入容器,不斷攪拌使混合液迅速均勻,并以沒分鐘3升的速率流出容器,問在時刻容器的含鹽量是多少?解:設(shè)在時刻,容器內(nèi)含鹽量為,在時間內(nèi)鹽的改變量)(相應(yīng)設(shè)注入與流出的鹽的量分別為平均變化率當(dāng)時時刻的瞬時改變速度升分18第十八頁,共三十三頁,2022年,8月28日即:容器內(nèi)某個量的變化率=注入量的變化率-流出量的變化率整理得代入通解公式求解.19第十九頁,共三十三頁,2022年,8月28日一室模型:把機體當(dāng)著一個動力學(xué)上的同質(zhì)單元,使用于給藥后,藥物瞬即分布到血液及其他組織中,并達到動態(tài)平衡.表室的容積,通常稱為藥物的表面分布容積.為時間時體內(nèi)的藥量入出分別表示藥物給藥和消除速率.藥物動力學(xué)室模型:為了揭示藥物在體內(nèi)的動力學(xué)規(guī)律,便于用數(shù)學(xué)方法處理,在藥物吸收,分布代謝動力學(xué)中,廣泛采用簡化的室模型來研究藥物在體內(nèi)的和排泄的時間過程.給藥消除出入20第二十頁,共三十三頁,2022年,8月28日一室模型的一般動力學(xué)方程為=入-出①通常假定消除是一級速率過程,即出②其中為一級速率常數(shù).將②代入①有機體內(nèi)藥量的變化規(guī)律由給藥速率入而定.=入③單位時間內(nèi)室中藥物的變化率等于輸入與輸出之差.21第二十一頁,共三十三頁,2022年,8月28日按三種給藥途徑建立相應(yīng)的一室模型快速靜脈滴注在快速靜脈注射情況下,可以認為一個劑量是瞬時輸入到房室內(nèi)的,沒有吸收過程,因為入=0,這時體內(nèi)藥量減少的速度與當(dāng)時體內(nèi)藥量成正比,初始條件為.所以由③式得解之,并代入初始條件,得④描述了快速靜脈注射后,機體內(nèi)的藥量隨時間的變化規(guī)律.因為血藥濃度由方程④兩邊同除得血藥濃度隨時間的變化規(guī)律,即22第二十二頁,共三十三頁,2022年,8月28日其中表示初始(時)血藥濃度.恒速靜脈滴注以恒定速率作靜脈給藥時,入初始條件為,所以由③式得,解方程得兩邊同除以得血藥濃度隨時間的變化規(guī)律為口服或肌肉注射在這種給藥情況下,大多數(shù)藥物輸入室內(nèi)(吸收入血)的過程可作為一級過程處理,有23第二十三頁,共三十三頁,2022年,8月28日入其中表示在時刻“吸收部位”的藥量,為一級吸收速率常數(shù).為所給劑量中可吸收的分數(shù)(),稱為生物利用度.此時方程③為解之,得滿足初始條件的解為兩邊同除以得血藥濃度隨時間的變化規(guī)律為⑤24第二十四頁,共三十三頁,2022年,8月28日圖形為求最大血藥濃度(峰濃度)及其到達的時間達峰時).由⑤式得令得代入⑤得(曲線)稱為25第二十五頁,共三十三頁,2022年,8月28日由于,此時,代入化簡得在藥物動力學(xué)中,曲線下的總面積(AUC)有重要作用,這是由于在一定條件下,(AUC)能反映藥物最終吸收的程度.由⑤式可計算得顯然,在一定劑量,與吸收分數(shù)成正比.26第二十六頁,共三十三頁,2022年,8月28日關(guān)于腫瘤生長的幾個常見數(shù)學(xué)模型腫瘤的生長模型是指描述腫瘤大小(體積、重量或細胞數(shù)等)與時間關(guān)系的一種數(shù)學(xué)表達式.指數(shù)生長模型:假設(shè)腫瘤體積變化率與當(dāng)時腫瘤的體積成正比,若在時間腫瘤體積為速率常數(shù)為,則有分離變量,并帶入初始條件得其解為其中為開始觀察的時間.通常把這種用指數(shù)函數(shù)描述的生長稱為指數(shù)生長,把指數(shù)函數(shù)稱為指數(shù)生長模型,其圖形稱為指數(shù)生長曲線.指數(shù)生長模型⑥27第二十七頁,共三十三頁,2022年,8月28日是一連續(xù)型模型,體積隨時間的增大而迅速單調(diào)遞增,通常把腫瘤體積增大一倍所需要的時間稱為腫瘤倍增時間,記為,倍增時間是研究腫瘤生長、分析腫瘤性質(zhì)和類型等問題的重要參數(shù).在指數(shù)生長的情況下,腫瘤的倍增時間為常數(shù).將常數(shù)代入⑥式,且令得設(shè)腫瘤近似為球形,為直徑,因且若按直徑計算,便有臨床上常用該式推算腫瘤的大小.28第二十八頁,共三十三頁,2022年,8月28日Gompertz模型研究表明,隨著腫瘤的增大,倍增時間也不斷延長,即不是常數(shù),可假設(shè)的變化率隨的增大而減少,即其中為正常數(shù),于是腫瘤生長的數(shù)學(xué)模型為⑥⑦若初始條件為:則由⑦式解得29第二十九頁,共三十三頁,2022年,8月28日⑧將⑧式代入⑥式,得求得其解為符合Gompertz模型生長的腫瘤,其倍增的時間為Logistic模型在腫瘤生長過程中,由于營養(yǎng)供應(yīng)受到限制等原因,將會阻滯自身的繼續(xù)生長,故有30第三十頁,共三十三頁,2022年,8月28日其中、為正常數(shù).假設(shè)初始條件為求解貝努利方程得滿足初始條件的解為稱為logistic方程,也稱logistic生長模型.當(dāng)時,故是腫瘤生長的極限值.符合此模型腫瘤生長的倍增時間為31第三十一頁,共三十三頁,2022年,8月28日漢英詞匯對照可分離變量的微分方程separableequation一階線性微分方程linearfirst-orderdifferentialequation一階齊次線性微分方程homegeneouslinearfirst-orderdifferenti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論