版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.《九章算術(shù)》中有如下問題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天2.在ΔABC中,角A、B、C所對(duì)的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.223.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.4.直線上的點(diǎn)到圓上點(diǎn)的最近距離為()A. B. C. D.15.設(shè)平面向量,,若,則等于()A. B. C. D.6.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-27.若函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A.或 B.C.或 D.8.已知,,,則實(shí)數(shù)、、的大小關(guān)系是()A. B.C. D.9.如圖,A,B是半徑為1的圓周上的定點(diǎn),P為圓周上的動(dòng)點(diǎn),∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos10.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)t的最小值是()A.6 B.7 C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)x、y滿足約束條件,則的取值范圍是______.12.若為銳角,,則__________.13.直線的傾斜角為__________.14.已知向量,則___________.15.在中,,,,則的面積等于______.16.若數(shù)列滿足,,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.已知無(wú)窮數(shù)列,是公差分別為、的等差數(shù)列,記(),其中表示不超過的最大整數(shù),即.(1)直接寫出數(shù)列,的前4項(xiàng),使得數(shù)列的前4項(xiàng)為:2,3,4,5;(2)若,求數(shù)列的前項(xiàng)的和;(3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.18.設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.19.如圖,在梯形中,,,,.(1)在中,求的長(zhǎng);(2)若的面積等于,求的長(zhǎng).20.已知過點(diǎn)且斜率為的直線與圓:交于,兩點(diǎn).(1)求斜率的取值范圍;(2)為坐標(biāo)原點(diǎn),求證:直線與的斜率之和為定值.21.在銳角三角形中,分別是角的對(duì)邊,且.(1)求角的大小;(2)若,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
設(shè)蒲的長(zhǎng)度組成等比數(shù)列{an},其a1=3,公比為,其前n項(xiàng)和為An.莞的長(zhǎng)度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項(xiàng)和為Bn.利用等比數(shù)列的前n項(xiàng)和公式及其對(duì)數(shù)的運(yùn)算性質(zhì)即可得出..【詳解】設(shè)蒲的長(zhǎng)度組成等比數(shù)列{an},其a1=3,公比為,其前n項(xiàng)和為An.莞的長(zhǎng)度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項(xiàng)和為Bn.則An,Bn,由題意可得:,化為:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估計(jì)2.3日蒲、莞長(zhǎng)度相等,故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式在實(shí)際中的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.2、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.3、C【解析】
將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當(dāng)a=2故答案選C【點(diǎn)睛】本題考查了直線方程,均值不等式,1的代換是解題的關(guān)鍵.4、C【解析】
求出圓心和半徑,求圓心到直線的距離,此距離減去半徑即得所求的結(jié)果.【詳解】將圓化為標(biāo)準(zhǔn)形式可得可得圓心為,半徑,而圓心到直線距離為,
因此圓上點(diǎn)到直線的最短距離為,故選:C.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,求圓心到直線的距離是解題的關(guān)鍵,屬于中檔題.5、D【解析】分析:由向量垂直的條件,求解,再由向量的模的公式和向量的數(shù)量積的運(yùn)算,即可求解結(jié)果.詳解:由題意,平面向量,且,所以,所以,即,又由,所以,故選D.點(diǎn)睛:本題主要考查了向量的數(shù)量積的運(yùn)算和向量模的求解,其中解答中熟記平面向量的數(shù)量積的運(yùn)算公式和向量模的計(jì)算公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、A【解析】
畫出不等式組表示的平面區(qū)域,平移目標(biāo)函數(shù),找出最優(yōu)解,求出的最小值.【詳解】畫出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標(biāo)函數(shù)知,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由得,即點(diǎn)坐標(biāo)為∴的最小值為,故選A.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.7、A【解析】
根據(jù)題意,原題等價(jià)于,再討論即可得到結(jié)論.【詳解】由題,故函數(shù)有一個(gè)零點(diǎn)等價(jià)于即當(dāng)時(shí),,,符合題意;當(dāng),時(shí),令,滿足解得,綜上的取值范圍是或故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),對(duì)數(shù)函數(shù)的性質(zhì),二次函數(shù)根的分布問題,考查了分類討論思想,屬于中檔題.8、B【解析】
將bc化簡(jiǎn)為最簡(jiǎn)形式,再利用單調(diào)性比較大小?!驹斀狻恳?yàn)樵趩握{(diào)遞增所以【點(diǎn)睛】本題考查利用的單調(diào)性判斷大小,屬于基礎(chǔ)題。9、B【解析】
由正弦定理可得,,則,,當(dāng)點(diǎn)在的中垂線上時(shí),取得最大值,此時(shí)的面積最大,求解即可.【詳解】在中,由正弦定理可得,,則.,當(dāng)點(diǎn)在的中垂線上時(shí),取得最大值,此時(shí)的面積最大.取的中點(diǎn),過點(diǎn)作的垂線,交圓于點(diǎn),取圓心為,則(為銳角),.所以的面積最大為.故選B.【點(diǎn)睛】本題考查了三角形的面積的計(jì)算、正弦定理的應(yīng)用,考查了三角函數(shù)的化簡(jiǎn),考查了計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
先根據(jù)三角函數(shù)的性質(zhì)可推斷出函數(shù)的最小正周期為6,進(jìn)而推斷出,進(jìn)而求得t的范圍,進(jìn)而求得t的最小值.【詳解】函數(shù)的周期T=6,則,∴,∴正整數(shù)t的最小值是8.故選:C.【點(diǎn)睛】本題主要考查三角函數(shù)的周期性以及正弦函數(shù)的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由約束條件可得可行域,將問題轉(zhuǎn)化為在軸截距取值范圍的求解;通過直線平移可確定的最值點(diǎn),代入點(diǎn)的坐標(biāo)可求得最值,進(jìn)而得到取值范圍.【詳解】由約束條件可得可行域如下圖陰影部分所示:將的取值范圍轉(zhuǎn)化為在軸截距的取值范圍問題由平移可知,當(dāng)過圖中兩點(diǎn)時(shí),在軸截距取得最大和最小值,,的取值范圍為故答案為:【點(diǎn)睛】本題考查線性規(guī)劃中的取值范圍問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化成直線在軸截距的取值范圍的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.12、【解析】因?yàn)闉殇J角,,所以,.13、【解析】試題分析:由直線方程可知斜率考點(diǎn):直線傾斜角與斜率14、【解析】
根據(jù)向量夾角公式可求出結(jié)果.【詳解】.【點(diǎn)睛】本題考查了向量夾角的運(yùn)算,牢記平面向量的夾角公式是破解問題的關(guān)鍵.15、【解析】
先用余弦定理求得,從而得到,再利用正弦定理三角形面積公式求解.【詳解】因?yàn)樵谥校?,,由余弦定理得,所以由正弦定理得故答案為:【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.16、【解析】
利用遞推公式再遞推一步,得到一個(gè)新的等式,兩個(gè)等式相減,再利用累乘法可求出數(shù)列的通項(xiàng)公式,利用所求的通項(xiàng)公式可以求出的值.【詳解】得,,所以有,因此.故答案為:【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累乘法,考查了數(shù)學(xué)運(yùn)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2);(3)證明見解析【解析】
(1)根據(jù)定義,選擇,的前4項(xiàng),盡量選用整數(shù)計(jì)算方便;(2)分別考慮,的前項(xiàng)的規(guī)律,然后根據(jù)計(jì)算的運(yùn)算規(guī)律計(jì)算;(3)根據(jù)必要不充分條件的推出情況去證明即可.【詳解】(1)由的前4項(xiàng)為:2,3,4,5,選、的前項(xiàng)為正整數(shù):的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2)將的前項(xiàng)列舉出:;將的前項(xiàng)列舉出:;則;(3)充分性:取,此時(shí),將的前項(xiàng)列舉出:,將前項(xiàng)列出:,此時(shí)的前項(xiàng)為:,顯然不是等差數(shù)列,充分性不滿足;必要性:設(shè),,當(dāng)為等差數(shù)列時(shí),因?yàn)?,所以,又因?yàn)?,所以有:,且,所以;,,不妨令,則有如下不等式:;當(dāng)時(shí),令,則當(dāng)時(shí),,此時(shí)無(wú)解;當(dāng)時(shí),令,則當(dāng)時(shí),,此時(shí)無(wú)解;所以必有:,故:必要性滿足;綜上:數(shù)列為等差數(shù)列的必要非充分條件是【點(diǎn)睛】本題考查數(shù)列的定義以及證明,難度困難.對(duì)于充分必要條件的證明,需要對(duì)充分性和必要性同時(shí)分析,不能取其一分析;新定義的數(shù)列問題,可通過定義先理解定義的含義,然后再分析問題.18、【解析】試題分析:(1)結(jié)合數(shù)列遞推公式形式可知采用累和法求數(shù)列的通項(xiàng)公式,求解時(shí)需結(jié)合等比數(shù)列求和公式;(2)由得數(shù)列的通項(xiàng)公式為,求和時(shí)采用錯(cuò)位相減法,在的展開式中兩邊同乘以4后,兩式相減可得到試題解析:(1)由已知,當(dāng)時(shí),==,.而,所以數(shù)列的通項(xiàng)公式為.(2)由知…①……7分從而……②①②得,即.考點(diǎn):1.累和法求數(shù)列通項(xiàng)公式;2.錯(cuò)位相減法求和19、(1);(2)【解析】
(1)首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理求解即可.(2)求出梯形的高,再利用三角形的面積求解即可.【詳解】解:(1)在梯形中,,,,.可得,由正弦定理可得:.(2)過作,交的延長(zhǎng)線于則即梯形的高為,因?yàn)榈拿娣e等于,,,,【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,三角形面積公式的應(yīng)用,屬于中檔題.20、(1)(2)見解析【解析】
(1)根據(jù)圓心到直線的距離小于半徑得到答案.(2)聯(lián)立直線與圓方程:.韋達(dá)定理得計(jì)算,化簡(jiǎn)得到答案.【詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯(lián)立直線與圓方程:.消去整理得.設(shè),,根據(jù)韋達(dá)定理得.則.∴直線與的斜率之和為定值1.【點(diǎn)睛】本題考查了斜率的取值范圍,圓錐曲線的定值問題,意在考查學(xué)生的計(jì)算能力.21、(1);(2)【解析】
(1)利用正弦定理邊化角,可整理求得,根據(jù)三角形為銳角三角
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 38055.2-2025越野叉車安全使用要求第2部分:回轉(zhuǎn)伸縮臂式叉車
- 2026年放射診斷(CT影像診斷)試題及答案
- 2026年土壤污染檢測(cè)(農(nóng)藥殘留檢測(cè))試題及答案
- 2025年高職高星級(jí)飯店運(yùn)營(yíng)與管理(飯店管理)試題及答案
- 2025年大學(xué)家居產(chǎn)品設(shè)計(jì)(應(yīng)用解讀)試題及答案
- 2025年大學(xué)中藥制劑學(xué)(中藥制劑學(xué)基礎(chǔ))試題及答案
- 2026年農(nóng)業(yè)技術(shù)(病蟲害防治技術(shù))試題及答案
- 2025年高職第二學(xué)年(學(xué)前教育)幼兒語(yǔ)言教育試題及答案
- 2025年高職計(jì)算機(jī)應(yīng)用技術(shù)(多媒體技術(shù))試題及答案
- 2025年大學(xué)大三(交通運(yùn)輸)物流工程學(xué)階段測(cè)試題及答案
- 中國(guó)外運(yùn)招聘筆試題庫(kù)2026
- 2026年戶外綠化養(yǎng)護(hù)合同協(xié)議
- 賽事委托協(xié)議書
- 農(nóng)資聘用合同范本
- 二十屆四中全會(huì)測(cè)試題及參考答案
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- NeuViz 16 射線計(jì)算機(jī)斷層攝影設(shè)備產(chǎn)品信息手
- 2021修訂《城市規(guī)劃設(shè)計(jì)計(jì)費(fèi)指導(dǎo)意見》
- 叔叔在侄子訂婚宴致辭
- 電子地圖的基本構(gòu)成與數(shù)據(jù)類型
- 2023上海物理水平等級(jí)考+答案
評(píng)論
0/150
提交評(píng)論