小學(xué)奧數(shù)知識(shí)點(diǎn)大集合_第1頁(yè)
小學(xué)奧數(shù)知識(shí)點(diǎn)大集合_第2頁(yè)
小學(xué)奧數(shù)知識(shí)點(diǎn)大集合_第3頁(yè)
小學(xué)奧數(shù)知識(shí)點(diǎn)大集合_第4頁(yè)
小學(xué)奧數(shù)知識(shí)點(diǎn)大集合_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

小學(xué)奧數(shù)知識(shí)點(diǎn)大集合1.雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;基本思路:①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差?;竟剑孩侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。2.盈虧問題基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭浚舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.基本題型:①一次有余數(shù),另一次不足;基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差②當(dāng)兩次都有余數(shù);基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差③當(dāng)兩次都不足;基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。關(guān)鍵問題:確定對(duì)象總量和總的組數(shù)。

3.牛吃草問題基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量?;咎攸c(diǎn):原草量和新草生長(zhǎng)速度是不變的;關(guān)鍵問題:確定兩個(gè)不變的量。基本公式:生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量。

4.年齡問題的三個(gè)基本特征①兩個(gè)人的年齡差是不變的;②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;5.歸一問題的基本特點(diǎn)問題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語來表示。關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;

6.植樹問題基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹基本公式棵數(shù)=段數(shù)+1棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)-1棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)棵距×段數(shù)=總長(zhǎng)關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

7.倍問題和差問題和倍問題差倍問題已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系公式①(和-差)÷2=較小數(shù)較小數(shù)+差=較大數(shù)和-較小數(shù)=較大數(shù)②(和+差)÷2=較大數(shù)較大數(shù)-差=較小數(shù)和-較大數(shù)=較小數(shù)和÷(倍數(shù)+1)=小數(shù)小數(shù)×倍數(shù)=大數(shù)和-小數(shù)=大數(shù)差÷(倍數(shù)-1)=小數(shù)小數(shù)×倍數(shù)=大數(shù)小數(shù)+差=大數(shù)關(guān)鍵問題求出同一條件下的和與差和與倍數(shù)差與倍數(shù)

8.周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時(shí)間叫周期。關(guān)鍵問題:確定循環(huán)周期。閏年:一年有366天;①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;平年:一年有365天。①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均數(shù)基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)總數(shù)量=平均數(shù)×總份數(shù)總份數(shù)=總數(shù)量÷平均數(shù)②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)基本算法:①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②。

10.?dāng)?shù)列求和等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列?;靖拍睿菏醉?xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.基本思路:等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)?;竟剑和?xiàng)公式:an=a1+(n-1)d;通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)公差;數(shù)列和公式:sn,=(a1+an)n2;數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)2;項(xiàng)數(shù)公式:n=(an+a1)d+1;項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;公差公式:d=(an-a1))(n-1);公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);關(guān)鍵問題:確定已知量和未知量,確定使用的公式;

11.質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<……<an。求約數(shù)個(gè)數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。

12.約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。2、幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。4、幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。例如:12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2、3、6;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。2、短除法:先找公有的約數(shù),然后相乘。3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。12的倍數(shù)有:12、24、36、48……;18的倍數(shù)有:18、36、54、72……;那么12和18的公倍數(shù)有:36、72、108……;那么12和18最小的公倍數(shù)是36,記作[12,18]=36;最小公倍數(shù)的性質(zhì):1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

13.?dāng)?shù)的整除基本概念和符號(hào):1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“”;因?yàn)榉?hào)“∵”,所以的符號(hào)“∴”;整除判斷方法:1.能被2、5整除:末位上的數(shù)字能被2、5整除。2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4.能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。5.能被7整除:①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6.能被11整除:①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。③逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7.能被13整除:①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。整除的性質(zhì):1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3.如果a能被b整除,b又能被c整除,那么a也能被c整除。4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

14.余數(shù)及其應(yīng)用基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的性質(zhì):①余數(shù)小于除數(shù)。②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。

15.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用基本概念與性質(zhì):分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。常用方法:①逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。②對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。③轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。⑤量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。⑧濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。

16.完全平方數(shù)完全平方數(shù)特征:1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。2.除以3余0或余1;反之不成立。3.除以4余0或余1;反之不成立。4.約數(shù)個(gè)數(shù)為奇數(shù);反之成立。5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6.奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。7.兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2

17.工程問題基本公式:①工作總量=工作效率×工作時(shí)間②工作效率=工作總量÷工作時(shí)間③工作時(shí)間=工作總量÷工作效率基本思路:①假設(shè)工作總量為“1”(和總工作量無關(guān));②假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.關(guān)鍵問題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。

18.邏輯推理基本方法簡(jiǎn)介:①條件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。②條件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。③條件分析——圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒有表示不認(rèn)識(shí)。④邏輯計(jì)算:在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。⑤簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。

19.幾何面積基本思路:在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常用方法:1.連輔助線方法2.利用等底等高的兩個(gè)三角形面積相等。3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。4.利用特殊規(guī)律①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論