下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——2023年高二數(shù)學(xué)必背知識點(diǎn)(4篇)在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
高二數(shù)學(xué)必背知識點(diǎn)篇一
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
斜二測畫法特點(diǎn):①原來與x軸平行的線段依舊與x平行且長度不變;
②原來與y軸平行的線段依舊與y平行,長度為原來的一半。
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特別幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式:v=;s=
高二數(shù)學(xué)必背知識點(diǎn)篇二
平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
(x-a)^2+(y-b)^2=r^2
(1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;
(2)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出d,e,f;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
直線與圓的位置關(guān)系有相離,相切,相交三種狀況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
高二數(shù)學(xué)必背知識點(diǎn)篇三
假使一個數(shù)列從其次項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
前n項(xiàng)和公式為:sn=na1+n(n-1)d/2或sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為ar,am+an=2ar,所以ar為am,an的等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈n,且m+n=p+q,則有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差數(shù)列,等等。
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
高二數(shù)學(xué)必背知識點(diǎn)篇四
主要把握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差a-b可以表示成a與b的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分派律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基才能件,每個基才能件出現(xiàn)的可能性相等,則事件a所含基才能件個數(shù)與樣本空間所含基才能件個數(shù)的.比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件a看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
(1)加法公式:p(a+b)=p(a)+p(b)-p(ab),特別地,假使a與b互不相容,則p(a+b)=p(a)+p(b);
(2)差:p(a-b)=p(a)-p(ab),特別地,假使b包含于a,則p(a-b)=p(a)-p(b);
(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特別地,假使a與b相互獨(dú)立,則p(ab)=p(a)p(b);
(4)全概率公式:p(b)=∑p(ai)p(b|ai).它是由因求果,
貝葉斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai).它是由果索因;
假使一個事件b可以在多種情形(原因)a1,a2,,an下發(fā)生,則用全概率公式求b發(fā)生的概率;假使事件b已經(jīng)發(fā)生,要求它是由aj引起的概率,則用貝葉斯公式.
(5)二項(xiàng)概率公式:pn(k)=c(n,k)p^k(1-p)^(n-k)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 村醫(yī)公共衛(wèi)生工作制度
- 漢濱區(qū)教育局財務(wù)制度
- 衛(wèi)生站院感工作制度
- 衛(wèi)生環(huán)境分片包干制度
- 學(xué)校衛(wèi)生目標(biāo)及考核制度
- 城市環(huán)境衛(wèi)生清掃管理制度
- 商店衛(wèi)生消毒制度
- 財務(wù)制度關(guān)于差旅費(fèi)規(guī)定
- 礦山救援隊財務(wù)制度
- 衛(wèi)生院檢驗(yàn)師聘用制度
- GB/T 21558-2025建筑絕熱用硬質(zhì)聚氨酯泡沫塑料
- 面神經(jīng)炎美國神經(jīng)病學(xué)會和美國耳鼻喉-頭頸外科學(xué)會治療
- 鍋爐煤場安全管理制度
- DB11∕T1135-2024供熱系統(tǒng)有限空間作業(yè)安全技術(shù)規(guī)程
- DB14-T2535-2022煤炭綠色開采技術(shù)指南
- JT-T-939.2-2014公路LED照明燈具第2部分:公路隧道LED照明燈具
- 墻面防潮合同
- 皮膚科輪轉(zhuǎn)出科小結(jié)
- 醫(yī)院護(hù)士培訓(xùn)課件:《護(hù)理值班、交接班制度》
- 產(chǎn)品開發(fā)任務(wù)書
- 《短歌行》《歸園田居(其一)》 統(tǒng)編版高中語文必修上冊
評論
0/150
提交評論