中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】_第1頁(yè)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】_第2頁(yè)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】_第3頁(yè)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】_第4頁(yè)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【優(yōu)秀4篇】在我們平凡的學(xué)生生涯里,看到知識(shí)點(diǎn),都是先收藏再說吧!知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,下面是小編為大伙兒帶來的4篇《中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)》,如果能幫助到您,小編將不勝榮幸。

高中圓知識(shí)點(diǎn)的總結(jié)篇一

1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

推論1:

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條??;

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條??;

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

17.

①兩圓外離dR+r

②兩圓外切d=R+r

③兩圓相交dR-r)

④兩圓內(nèi)切d=R-r(Rr)

⑤兩圓內(nèi)含d=r)

18.定理把圓分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

21.內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)。

22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

高中圓知識(shí)點(diǎn)的總結(jié)篇二

數(shù)學(xué)圓的知識(shí)點(diǎn)

1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。

6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

圓--⊙半徑—r弧--⌒直徑—d

扇形弧長(zhǎng)/圓錐母線—l周長(zhǎng)—C面積—S三、有關(guān)圓的'基本性質(zhì)與定理(27個(gè))

1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

P在⊙O外,POr;P在⊙O上,PO=r;P在⊙O內(nèi),PO

2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

8.一個(gè)三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

離):

AB與⊙O相離,POr;AB與⊙O相切,PO=r;AB與⊙O相交,PO

10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

外離PR+r;外切P=R+r;相交R-r

1.圓的周長(zhǎng)C=2πr=πd

2.圓的面積S=s=πr?

3.扇形弧長(zhǎng)l=nπr/180

4.扇形面積S=nπr?/360=rl/2

5.圓錐側(cè)面積S=πrl

數(shù)學(xué)學(xué)習(xí)方法

1.先看筆記后做作業(yè)。

有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對(duì)教師所說的理解沒有達(dá)到教師要求的水平。

因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長(zhǎng)一段時(shí)間內(nèi),會(huì)造成很大的損失。

2.做題之后加強(qiáng)反思。

學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問題,并總結(jié)我們自己的收獲。

要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說:有錢難買回頭看。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過程中一個(gè)非常重要的環(huán)節(jié)。

我們應(yīng)該看看我們做得對(duì)不對(duì);還有什么解決辦法;問題在知識(shí)體系中的地位是什么;解決辦法的實(shí)質(zhì)是什么;問題中的知識(shí)是否可以與我們所要求的交換,以及我們是否可以作出適當(dāng)?shù)难a(bǔ)充或刪除。有了以上五個(gè)回頭看,解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大。可稱為事半功倍。

有人認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。數(shù)學(xué)要不要刷題?一般說做的題太少,很多熟能生巧的問題就會(huì)無從談起。因此,應(yīng)該適當(dāng)?shù)囟嗨㈩}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來,要總結(jié)反思,進(jìn)行章節(jié)總結(jié)是非常重要的。

數(shù)學(xué)學(xué)習(xí)技巧

養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項(xiàng)重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯(cuò)誤的。學(xué)生們不得不預(yù)習(xí)課本。我準(zhǔn)備的數(shù)學(xué)教科書不是簡(jiǎn)單的閱讀,而是一個(gè)例子,至少十分鐘的思考。在使用前不能通過學(xué)習(xí)知識(shí)解決問題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時(shí),在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對(duì)筆記內(nèi)容的查詢。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三

一、目標(biāo)與要求

1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目。

2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識(shí)解決問題。

二、重點(diǎn)

1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。

2.判定一個(gè)數(shù)是否是方程的根;

3.用配方法、公式法、因式分解法降次──解一元二次方程。

4.運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想。

5.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問題。

三、難點(diǎn)

1.一元二次方程配方法解題。

2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。

3.用公式法解一元二次方程時(shí)的討論。

4.通過根據(jù)平方根的意義解形如x2=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。

5.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型,方程解與實(shí)際問題解的區(qū)別。

6.由實(shí)際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問題的根。

7.知識(shí)框架

四、知識(shí)點(diǎn)、概念總結(jié)

1.一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四個(gè)特點(diǎn):

(1)含有一個(gè)未知數(shù);

(2)且未知數(shù)次數(shù)最高次數(shù)是2;

(3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對(duì)它進(jìn)行整理。如果能整理為ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程。

(4)將方程化為一般形式:ax2+bx+c=0時(shí),應(yīng)滿足(a≠0)

3.一元二次方程的一般形式:一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四

一、三角形的有關(guān)概念

1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。

2.三角形中的三條重要線段:角平分線、中線、高

(1)角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

(2)中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。

(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長(zhǎng)線)相交于一點(diǎn)。

二、等腰三角形的性質(zhì)和判定

(1)性質(zhì)

1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成"等邊對(duì)等角")。

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡(jiǎn)寫成"等腰三角形的三線合一")。

3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(需用等面積法證明)。

7.等腰三角形是軸對(duì)稱圖形,只有一條對(duì)稱軸,頂角平分線所在的直線是它的對(duì)稱軸,等邊三角形有三條對(duì)稱軸。

(2)判定

在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。

在同一三角形中,有兩個(gè)角相等的三角形是等腰三角形(簡(jiǎn)稱:等角對(duì)等邊)。

三、直角三角形和勾股定理

有一個(gè)角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對(duì)的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。

勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

勾股數(shù)一定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

方法總結(jié):

當(dāng)不明確直角三角形的斜邊長(zhǎng),應(yīng)把已知最長(zhǎng)邊分為直角邊和斜邊兩種情況討論。無理數(shù)在數(shù)軸上的表示和線段長(zhǎng)表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)

如果三角形的三邊長(zhǎng)a,b,c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。

四、初中三角形中線定理

中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長(zhǎng)度關(guān)系。

定理內(nèi)容:三角形一條中線兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線平方和的2倍。

中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點(diǎn)。

由定義可知,三角形的中線是一條線段。

由于三角形有三條邊,所以一個(gè)三角形有三條中線。

且三條中線交于一點(diǎn)。這點(diǎn)稱為三角形的重心。

每條三角形中線分得的兩個(gè)三角形面積相等。

五、直角三角形的判定

判定1:有一個(gè)角為90°的三角形是直角三角形。

判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。

判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,那么這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。

判定4:兩個(gè)銳角互余的三角形是直角三角形。

判定5:證明直角三角形全等時(shí)可以利用HL,兩個(gè)三角形的斜邊長(zhǎng)對(duì)應(yīng)相等,以及一個(gè)直角邊對(duì)應(yīng)相等,則兩直角三角形全等。[定理:斜邊和一條直角對(duì)應(yīng)相等的兩個(gè)直角三角形全等。簡(jiǎn)稱為HL]

判定6:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則這兩直線垂直。

判定7:在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論