版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
./三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無(wú)法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個(gè)三角形的公共角。證明:分別延長(zhǎng)DA,CB,它們的延長(zhǎng)交于E點(diǎn),∵AD⊥ACBC⊥BD〔已知∴∠CAE=∠DBE=90°〔垂直的定義在△DBE與△CAE中∵∴△DBE≌△CAE〔AAS∴ED=ECEB=EA〔全等三角形對(duì)應(yīng)邊相等∴ED-EA=EC-EB即:AD=BC?!伯?dāng)條件不足時(shí),可通過(guò)添加輔助線得出新的條件,為證題創(chuàng)造條件。二、連接四邊形的對(duì)角線,把四邊形的問(wèn)題轉(zhuǎn)化成為三角形來(lái)解決。三、有和角平分線垂直的線段時(shí),通常把這條線段延長(zhǎng)。例如:如圖9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延長(zhǎng)于E。求證:BD=2CE分析:要證BD=2CE,想到要構(gòu)造線段2CE,同時(shí)CE與∠ABC的平分線垂直,想到要將其延長(zhǎng)。證明:分別延長(zhǎng)BA,CE交于點(diǎn)F?!連E⊥CF〔已知∴∠BEF=∠BEC=90°〔垂直的定義在△BEF與△BEC中,∵∴△BEF≌△BEC〔ASA∴CE=FE=CF〔全等三角形對(duì)應(yīng)邊相等∵∠BAC=90°BE⊥CF〔已知∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD與△ACF中∴△ABD≌△ACF〔AAS∴BD=CF〔全等三角形對(duì)應(yīng)邊相等∴BD=2CE四、取線段中點(diǎn)構(gòu)造全等三有形。例如:如圖11-1:AB=DC,∠A=∠D求證:∠ABC=∠DCB。分析:由AB=DC,∠A=∠D,想到如取AD的中點(diǎn)N,連接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN。下面只需證∠NBC=∠NCB,再取BC的中點(diǎn)M,連接MN,則由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB。問(wèn)題得證。證明:取AD,BC的中點(diǎn)N、M,連接NB,NM,NC。則AN=DN,BM=CM,在△ABN和△DCN中∵∴△ABN≌△DCN〔SAS∴∠ABN=∠DCNNB=NC〔全等三角形對(duì)應(yīng)邊、角相等在△NBM與△NCM中∵∴△NMB≌△NCM,<SSS>∴∠NBC=∠NCB〔全等三角形對(duì)應(yīng)角相等∴∠NBC+∠ABN=∠NCB+∠DCN即∠ABC=∠DCB。巧求三角形中線段的比值例1.如圖1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC。解:過(guò)點(diǎn)D作DG//AC,交BF于點(diǎn)G所以DG:FC=BD:BC因?yàn)锽D:DC=1:3所以BD:BC=1:4即DG:FC=1:4,FC=4DG因?yàn)镈G:AF=DE:AE又因?yàn)锳E:ED=2:3所以DG:AF=3:2即所以AF:FC=:4DG=1:6例2.如圖2,BC=CD,AF=FC,求EF:FD解:過(guò)點(diǎn)C作CG//DE交AB于點(diǎn)G,則有EF:GC=AF:AC因?yàn)锳F=FC所以AF:AC=1:2即EF:GC=1:2,因?yàn)镃G:DE=BC:BD又因?yàn)锽C=CD所以BC:BD=1:2CG:DE=1:2即DE=2GC因?yàn)镕D=ED-EF=所以EF:FD=小結(jié):以上兩例中,輔助線都作在了"已知"條件中出現(xiàn)的兩條已知線段的交點(diǎn)處,且所作的輔助線與結(jié)論中出現(xiàn)的線段平行。請(qǐng)?jiān)倏磧衫?讓我們感受其中的奧妙!例3.如圖3,BD:DC=1:3,AE:EB=2:3,求AF:FD。解:過(guò)點(diǎn)B作BG//AD,交CE延長(zhǎng)線于點(diǎn)G。所以DF:BG=CD:CB因?yàn)锽D:DC=1:3所以CD:CB=3:4即DF:BG=3:4,因?yàn)锳F:BG=AE:EB又因?yàn)锳E:EB=2:3所以AF:BG=2:3即所以AF:DF=例4.如圖4,BD:DC=1:3,AF=FD,求EF:FC。解:過(guò)點(diǎn)D作DG//CE,交AB于點(diǎn)G所以EF:DG=AF:AD因?yàn)锳F=FD所以AF:AD=1:2圖4即EF:DG=1:2因?yàn)镈G:CE=BD:BC,又因?yàn)锽D:CD=1:3,所以BD:BC=1:4即DG:CE=1:4,CE=4DG因?yàn)镕C=CE-EF=所以EF:FC==1:7練習(xí):1.如圖5,BD=DC,AE:ED=1:5,求AF:FB。2.如圖6,AD:DB=1:3,AE:EC=3:1,求BF:FC。答案:1、1:10;2.9:1二由角平分線想到的輔助線圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對(duì)稱(chēng)性;b、角平分線上的點(diǎn)到角兩邊的距離相等。對(duì)于有角平分線的輔助線的作法,一般有兩種。①?gòu)慕瞧椒志€上一點(diǎn)向兩邊作垂線;②利用角平分線,構(gòu)造對(duì)稱(chēng)圖形〔如作法是在一側(cè)的長(zhǎng)邊上截取短邊。通常情況下,出現(xiàn)了直角或是垂直等條件時(shí),一般考慮作垂線;其它情況下考慮構(gòu)造對(duì)稱(chēng)圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線〔一、截取構(gòu)全等如圖1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,點(diǎn)E在AD上,求證:BC=AB+CD。分析:此題中就涉及到角平分線,可以利用角平分線來(lái)構(gòu)造全等三角形,即利用解平分線來(lái)構(gòu)造軸對(duì)稱(chēng)圖形,同時(shí)此題也是證明線段的和差倍分問(wèn)題,在證明線段的和差倍分問(wèn)題中常用到的方法是延長(zhǎng)法或截取法來(lái)證明,延長(zhǎng)短的線段或在長(zhǎng)的線段長(zhǎng)截取一部分使之等于短的線段。但無(wú)論延長(zhǎng)還是截取都要證明線段的相等,延長(zhǎng)要證明延長(zhǎng)后的線段與某條線段相等,截取要證明截取后剩下的線段與某條線段相等,進(jìn)而達(dá)到所證明的目的。已知:如圖1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求證DC⊥AC分析:此題還是利用角平分線來(lái)構(gòu)造全等三角形。構(gòu)造的方法還是截取線段相等。其它問(wèn)題自已證明。已知:如圖1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:AB-AC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問(wèn)題。用到的是截取法來(lái)證明的,在長(zhǎng)的線段上截取短的線段,來(lái)證明。試試看可否把短的延長(zhǎng)來(lái)證明呢?〔二、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等過(guò)角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來(lái)證明問(wèn)題。如圖2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。如圖2-2,在△ABC中,∠A=90,AB=AC,∠ABD=∠CBD。求證:BC=AB+AD分析:過(guò)D作DE⊥BC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問(wèn)題,從中利用了相當(dāng)于截取的方法。已知如圖2-3,△ABC的角平分線BM、CN相交于點(diǎn)P。求證:∠BAC的平分線也經(jīng)過(guò)點(diǎn)P。分析:連接AP,證AP平分∠BAC即可,也就是證P到AB、AC的距離相等?!踩鹤鹘瞧椒志€的垂線構(gòu)造等腰三角形從角的一邊上的一點(diǎn)作角平分線的垂線,使之與角的兩邊相交,則截得一個(gè)等腰三角形,垂足為底邊上的中點(diǎn),該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)?!踩绻}目中有垂直于角平分線的線段,則延長(zhǎng)該線段與角的另一邊相交。已知:如圖3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中點(diǎn)。求證:DH=〔AB-AC分析:延長(zhǎng)CD交AB于點(diǎn)E,則可得全等三角形。問(wèn)題可證。已知:如圖3-2,AB=AC,∠BAC=90,AD為∠ABC的平分線,CE⊥BE.求證:BD=2CE。分析:給出了角平分線給出了邊上的一點(diǎn)作角平分線的垂線,可延長(zhǎng)此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖3-3在△ABC中,AD、AE分別∠BAC的內(nèi)、外角平分線,過(guò)頂點(diǎn)B作BFAD,交AD的延長(zhǎng)線于F,連結(jié)FC并延長(zhǎng)交AE于M。求證:AM=ME。分析:由AD、AE是∠BAC內(nèi)外角平分線,可得EA⊥AF,從而有BF//AE,所以想到利用比例線段證相等。已知:如圖3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延長(zhǎng)線于M。求證:AM=〔AB+AC分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對(duì)稱(chēng)變換,作△ABD關(guān)于AD的對(duì)稱(chēng)△AED,然后只需證DM=EC,另外由求證的結(jié)果AM=〔AB+AC,即2AM=AB+AC,也可嘗試作△ACM關(guān)于CM的對(duì)稱(chēng)△FCM,然后只需證DF=CF即可。三由線段和差想到的輔助線線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時(shí),一般方法是截長(zhǎng)補(bǔ)短法:1、截長(zhǎng):在長(zhǎng)線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補(bǔ)短:將一條短線段延長(zhǎng),延長(zhǎng)部分等于另一條短線段,然后證明新線段等于長(zhǎng)線段。對(duì)于證明有關(guān)線段和差的不等式,通常會(huì)聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個(gè)三角形中證明。注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小角放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。DAECB例1.如圖,AC平分∠BAD,CE⊥AB,且∠B+DAECB例3已知:如圖,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。DCDCBAMBDCA例4如圖,已知Rt△ABC中,∠ACB=90°,AD是∠CAB的平分線,DMMBDCA1.如圖,AB∥CD,AE、DE分別平分∠BAD各∠ADE,求證:AD=AB+CD。EEDCBA2.如圖,△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E。求證:BD=DE+CE四由中點(diǎn)想到的輔助線三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線?!惨弧⒂芍悬c(diǎn)應(yīng)想到利用三角形的中位線例2.如圖3,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),BA、CD的延長(zhǎng)線分別交EF的延長(zhǎng)線G、H。求證:∠BGE=∠CHE。證明:連結(jié)BD,并取BD的中點(diǎn)為M,連結(jié)ME、MF,∵M(jìn)E是ΔBCD的中位線,∴MECD,∴∠MEF=∠CHE,∵M(jìn)F是ΔABD的中位線,∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,從而∠BGE=∠CHE。〔二、由中線應(yīng)想到延長(zhǎng)中線例3.圖4,已知ΔABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長(zhǎng)。解:延長(zhǎng)AD到E,使DE=AD,則AE=2AD=2×2=4。在ΔACD和ΔEBD中,
∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,從而B(niǎo)E=AC=3。在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2。例4.如圖5,已知ΔABC中,AD是∠BAC的平分線,AD又是BC邊上的中線。求證:ΔABC是等腰三角形。證明:延長(zhǎng)AD到E,使DE=AD。仿例3可證:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,從而AB=AC,即ΔABC是等腰三角形?!踩?、直角三角形斜邊中線的性質(zhì)例5.如圖6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求證:AC=BD。證明:取AB的中點(diǎn)E,連結(jié)DE、CE,則DE、CE分別為RtΔABD,RtΔABC斜邊AB上的中線,故DE=CE=AB,因此∠CDE=∠DCE?!逜B//DC,∴∠CDE=∠1,∠DCE=∠2,∴∠1=∠2,在ΔADE和ΔBCE中,∵DE=CE,∠1=∠2,AE=BE,∴ΔADE≌ΔBCE,∴AD=BC,從而梯形ABCD是等腰梯形,因此AC=BD?!菜?、角平分線且垂直一線段,應(yīng)想到等腰三角形的中線例6.如圖7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點(diǎn)D,CE垂直于BD,交BD的延長(zhǎng)線于點(diǎn)E。求證:BD=2CE。證明:延長(zhǎng)BA,CE交于點(diǎn)F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,從而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。注:此例中BE是等腰ΔBCF的底邊CF的中線?!参逯芯€延長(zhǎng)口訣:三角形中有中線,延長(zhǎng)中線等中線。題目中如果出現(xiàn)了三角形的中線,常延長(zhǎng)加倍此線段,再將端點(diǎn)連結(jié),便可得到全等三角形。1如圖,AB=CD,E為BC的中點(diǎn),∠BAC=∠BCA,求證:AD=2AE。BBECDA3如圖,AB=AC,AD=AE,M為BE中點(diǎn),∠BAC=∠DAE=90°。求證:AM⊥DC。DDMCDEDADBDABDCABDCEF五全等三角形輔助線〔一、倍長(zhǎng)中線〔線段造全等1:〔"希望杯"試題已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.2:如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點(diǎn),試比較BE+CF與EF的大小.3:如圖,△ABC中,BD=DC=AC,E是DC的中點(diǎn),求證:AD平分∠BAE.中考應(yīng)用例題:以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點(diǎn).探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.〔1如圖①當(dāng)為直角三角形時(shí),AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;〔2將圖①中的等腰Rt繞點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn)<0<<90>后,如圖②所示,〔1問(wèn)中得到的兩個(gè)結(jié)論是否發(fā)生改變?并說(shuō)明理由.〔二、截長(zhǎng)補(bǔ)短1.如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC2:如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過(guò)點(diǎn)E,求證;AB=AC+BD3:如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4:如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5〔三、借助角平分線造全等1:如圖,已知在△ABC中,∠B=60°,△ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD2:〔06XX市中考題如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.〔1說(shuō)明BE=CF的理由;〔2如果AB=,AC=,求AE、BE的長(zhǎng).3.如圖①,OP是∠MON的平分線,請(qǐng)你利用該圖形畫(huà)一對(duì)以O(shè)P所在直線為對(duì)稱(chēng)軸的全等三角形。請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:〔1如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F。請(qǐng)你判斷并寫(xiě)出FE與FD之間的數(shù)量關(guān)系;<第23題圖>OPAMNEBCD<第23題圖>OPAMNEBCDFACEFBD圖①圖②圖③〔四、旋轉(zhuǎn)1:正方形ABCD中,E為BC上的一點(diǎn),F為CD上的一點(diǎn),BE+DF=EF,求∠EAF的度數(shù).2:D為等腰斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F。當(dāng)繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證DE=DF。若AB=2,求四邊形DECF的面積。3.如圖,是邊長(zhǎng)為3的等邊三角形,是等腰三角形,且,以D為頂點(diǎn)做一個(gè)角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則的周長(zhǎng)為;4.已知四邊形中,,,,,,繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交〔或它們的延長(zhǎng)線于.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)〔如圖1,易證.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.〔圖〔圖1〔圖2〔圖35.已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).<1>如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長(zhǎng);<2>當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大小.6.在等邊的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為外一點(diǎn),且,,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系及的周長(zhǎng)Q與等邊的周長(zhǎng)L的關(guān)系.圖1圖2圖3〔=1\*ROMANI如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是;此時(shí);〔=2\*ROMANII如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DMDN時(shí),猜想〔=1\*ROMANI問(wèn)的兩個(gè)結(jié)論還成立嗎?寫(xiě)出你的猜想并加以證明;〔=3\*ROMANIII如圖3,當(dāng)M、N分別在邊AB、CA的延長(zhǎng)線上時(shí),若AN=,則Q=〔用、L表示.梯形中的輔助線1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長(zhǎng).解:過(guò)點(diǎn)D作DE∥BC交AB于點(diǎn)E.又AB∥CD,所以四邊形BCDE是平行四邊形.所以DE=BC=17,CD=BE.在Rt△DAE中,由勾股定理,得AE2=DE2-AD2,即AE2=172-152=64.所以AE=8.所以BE=AB-AE=16-8=8.即CD=8.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。解:過(guò)點(diǎn)B作BM//AD交CD于點(diǎn)M,在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范圍是:5-4<BC<5+4,即1<BC<9。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分別是AD、BC的中點(diǎn),連接EF,求EF的長(zhǎng)。解:過(guò)點(diǎn)E分別作AB、CD的平行線,交BC于點(diǎn)G、H,可得∠EGH+∠EHG=∠B+∠C=90°則△EGH是直角三角形因?yàn)镋、F分別是AD、BC的中點(diǎn),容易證得F是GH的中點(diǎn)所以3、平移對(duì)角線:例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面積.解:如圖,作DE∥AC,交BC的延長(zhǎng)線于E點(diǎn).ABDCEH∵ABDCEH∴BE=BC+CE=BC+AD=4+1=5,DE=AC=4∵在△DBE中,BD=3,DE=4,BE=5∴∠BDE=90°.作DH⊥BC于H,則.例5如圖,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=,求證:AC⊥BD。解:過(guò)點(diǎn)C作BD的平行線交AD的延長(zhǎng)線于點(diǎn)E,易得四邊形BCED是平行四邊形,則DE=BC,CE=BD=,所以AE=AD+DE=AD+BC=3+7=10。在等腰梯形ABCD中,AC=BD=,所以在△ACE中,,從而AC⊥CE,于是AC⊥BD。例6如圖,在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面積。解:過(guò)點(diǎn)D作DE//AC,交BC的延長(zhǎng)線于點(diǎn)E,則四邊形ACED是平行四邊形,即。所以由勾股定理得〔cm〔cm所以,即梯形ABCD的面積是150cm2。〔二、延長(zhǎng)即延長(zhǎng)兩腰相交于一點(diǎn),可使梯形轉(zhuǎn)化為三角形。例7如圖,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的長(zhǎng)。解:延長(zhǎng)BA、CD交于點(diǎn)E。在△BCE中,∠B=50°,∠C=80°。所以∠E=50°,從而B(niǎo)C=EC=5同理可得AD=ED=2所以CD=EC-ED=5-2=3例8.如圖所示,四邊形ABCD中,AD不平行于BC,AC=BD,AD=BC.判斷四邊形ABCD的形狀,并證明你的結(jié)論.解:四邊形ABCD是等腰梯形.證明:延長(zhǎng)AD、BC相交于點(diǎn)E,如圖所示.∵AC=BD,AD=BC,AB=BA,∴△DAB≌△CBA.∴∠DAB=∠CBA.∴EA=EB.又AD=BC,∴DE=CE,∠EDC=∠ECD.而∠E+∠EAB+∠EBA=∠E+∠EDC+∠ECD=180°,∴∠EDC=∠EAB,∴DC∥AB.又AD不平行于BC,∴四邊形ABCD是等腰梯形.〔三、作對(duì)角線即通過(guò)作對(duì)角線,使梯形轉(zhuǎn)化為三角形。例9如圖6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于點(diǎn)E,求證:AD=DE。解:連結(jié)BD,由AD//BC,得∠ADB=∠DBE;由BC=CD,得∠DBC=∠BDC。所以∠ADB=∠BDE。又∠BAD=∠DEB=90°,BD=BD,所以Rt△BAD≌Rt△BED,得AD=DE?!菜摹⒆魈菪蔚母?、作一條高例10如圖,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,對(duì)角線AC⊥BD,垂足為F,過(guò)點(diǎn)F作EF//AB,交AD于點(diǎn)E,求證:四邊形ABFE是等腰梯形。證:過(guò)點(diǎn)D作DG⊥AB于點(diǎn)G,則易知四邊形DGBC是矩形,所以DC=BG。因?yàn)锳B=2DC,所以AG=GB。從而DA=DB,于是∠DAB=∠DBA。又EF//AB,所以四邊形ABFE是等腰梯形。2、作兩條高ABCDDEDFD例11、在等腰梯形ABCD中,AD//BC,AB=CD,∠ABC=60°ABCDDEDFD求:<1>腰AB的長(zhǎng);<2>梯形ABCD的面積.解:作AE⊥BC于E,DF⊥BC于F,又∵AD∥BC,∴四邊形AEFD是矩形,EF=AD=3cm∵AB=DC∵在Rt△ABE中,∠B=60°,BE=1cm∴AB=2BE=2cm,∴〔五、作中位線1、已知梯形一腰中點(diǎn),作梯形的中位線。例13如圖,在梯形ABCD中,AB//DC,O是BC的中點(diǎn),∠AOD=90°,求證:AB+CD=AD。證:取AD的中點(diǎn)E,連接OE,則易知OE是梯形ABCD的中位線,從而OE=〔AB+CD①在△AOD中,∠AOD=90°,AE=DE所以②由①、②得AB+CD=AD。2、已知梯形兩條對(duì)角線的中點(diǎn),連接梯形一頂點(diǎn)與一條對(duì)角線中點(diǎn),并延長(zhǎng)與底邊相交,使問(wèn)題轉(zhuǎn)化為三角形中位線。例14如圖,在梯形ABCD中,AD//BC,E、F分別是BD、AC的中點(diǎn),求證:〔1EF//AD;〔2。證:連接DF,并延長(zhǎng)交BC于點(diǎn)G,易證△AFD≌△CFG則AD=CG,DF=GF由于DE=BE,所以EF是△BDG的中位線從而EF//BG,且因?yàn)锳D//BG,所以EF//AD,EF3、在梯形中出現(xiàn)一腰上的中點(diǎn)時(shí),過(guò)這點(diǎn)構(gòu)造出兩個(gè)全等的三角形達(dá)到解題的目的。例15、在梯形ABCD中,AD∥BC,∠BAD=900,E是DC上的中點(diǎn),連接AE和BE,求∠AEB=2∠CBE。解:分別延長(zhǎng)AE與BC,并交于F點(diǎn)∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F<兩直線平行內(nèi)錯(cuò)角相等>∠AED=∠FEC〔對(duì)頂角相等DE=EC〔E點(diǎn)是CD的中點(diǎn)∴△ADE≌△FCE〔AAS∴AE=FE在△ABF中∠FBA=900 且AE=FE∴BE=FE〔直角三角形斜邊上的中線等于斜邊的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+∠FEB=2∠CBEABDCEF例16、已知:如圖,在梯形ABCD中,AD//BC,AB⊥BC,E是CDABDCEF解:AE=BE,理由如下:延長(zhǎng)AE,與BC延長(zhǎng)線交于點(diǎn)F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC,∴BE=AE.例17、已知:梯形ABCD中,AD//BC,E為DC中點(diǎn),EF⊥AB于F點(diǎn),AB=3cm,EF=5cm,求梯形ABCD的面積.解:如圖,過(guò)E點(diǎn)作MN∥AB,分別交AD的延長(zhǎng)線于M點(diǎn),交BC于N點(diǎn).ABCDEFMABCDEFMN∴△DEM≌△CNE四邊形ABNM是平行四邊形∵EF⊥AB,∴S梯形ABCD=S□ABNM=AB×EF=15cm2.[模擬試題]〔答題時(shí)間:40分鐘2.如圖所示,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,則此等腰梯形的周長(zhǎng)為〔A.19 B.20 C.21 D.22**8.如圖所示,梯形ABCD中,AD∥BC,〔1若E是AB的中點(diǎn),且AD+BC=C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年廣東農(nóng)工商職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)含答案詳解
- 2026年寧夏職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)及參考答案詳解一套
- 2026年黑龍江幼兒師范高等專(zhuān)科學(xué)校單招綜合素質(zhì)考試題庫(kù)含答案詳解
- 2026年天津工藝美術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及參考答案詳解
- 2026年重慶科技大學(xué)單招綜合素質(zhì)考試題庫(kù)及答案詳解1套
- 2026年福州職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及參考答案詳解1套
- 2026年內(nèi)江衛(wèi)生與健康職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及答案詳解1套
- 2026年鄭州汽車(chē)工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)及參考答案詳解1套
- 2026年青島工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)含答案詳解
- 2026年江蘇財(cái)會(huì)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)及答案詳解1套
- 2025年葫蘆島市總工會(huì)面向社會(huì)公開(kāi)招聘工會(huì)社會(huì)工作者5人備考題庫(kù)及參考答案詳解
- 2026班級(jí)馬年元旦主題聯(lián)歡晚會(huì) 教學(xué)課件
- 2025年沈陽(yáng)華晨專(zhuān)用車(chē)有限公司公開(kāi)招聘?jìng)淇脊P試題庫(kù)及答案解析
- 2025年云南省人民檢察院聘用制書(shū)記員招聘(22人)筆試考試參考試題及答案解析
- 2025天津市第二批次工會(huì)社會(huì)工作者招聘41人考試筆試備考試題及答案解析
- 2025年樂(lè)山市商業(yè)銀行社會(huì)招聘筆試題庫(kù)及答案解析(奪冠系列)
- 江西省三新協(xié)同體2025-2026年高一上12月地理試卷(含答案)
- 2025新疆維吾爾自治區(qū)哈密市法院、檢察院系統(tǒng)招聘聘用制書(shū)記員(31人)筆試考試參考試題及答案解析
- 高層建筑消防安全教育培訓(xùn)課件(香港大埔區(qū)宏福苑1126火災(zāi)事故警示教育)
- 2025新疆和田和康縣、和安縣面向社會(huì)招聘事業(yè)單位工作人員108人(公共基礎(chǔ)知識(shí))測(cè)試題附答案解析
評(píng)論
0/150
提交評(píng)論