版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
SolutionsManualfor:
LinearState-SpaceControlSystems
RobertL.WilliamsIIandDouglasA.Lawrence
OhioUniversity
submittedtoWileyDecember,2006
TableofContents
NUMERICALEXERCISESSOLUTIONS.....................................................................................4
CHAPTER14
CHAPTER25
CHAPTER38
CHAPTER412
CHAPTER516
CHAPTER618
CHAPTER722
CHAPTER824
CHAPTER926
ANALYTICALEXERCISESSOLUTIONS....................................................................................30
CHAPTER13()
CHAPTER238
CHAPTER346
CHAPTER459
CHAPTER566
CHAPTER670
CHAPTER775
CHAPTER879
CHAPTER987
CONTINUINGMATLABEXERCISESSOLUTIONS....................................................................91
CONTINUINGMATLABEXERCISE1..................................................................................................91
CONTINUINGMATLABEXERCISE2..................................................................................................95
CONTINUINGMATLABEXERCISE3..................................................................................................99
CONTINUINGMATLABEXERCISE4.................................................................................................103
CONTINUINGEXERCISESSOLUTIONS....................................................................................108
CONTINUINGEXERCISE1-THREE-MASSTRANSLATIONALMECHANICALSYSTEM............................109
Open-LoopSystem.......................................................................................................................109
Open-LoopResponse...................................................................................................................109
Controllability&Observability....................................................................................................110
CanonicalRealizations................................................................................................................110
StabilityAnalysis..........................................................................................................................112
DynamicShaping.........................................................................................................................112
ControllerDesign........................................................................................................................113
ObserverDesign..........................................................................................................................115
CONTINUINGEXERCISE2-INVERTEDPENDULUM...........................................................................117
Open-LoopSystem.......................................................................................................................117
Open-LoopResponse...................................................................................................................117
Controllability&Observability....................................................................................................118
CanonicalRealizations................................................................................................................118
StabilityAnalysis..........................................................................................................................119
DynamicShaping.........................................................................................................................120
ControllerDesign........................................................................................................................120
LQRDesign..................................................................................................................................121
CONTINUINGEXERCISE3-ROBOTJOINT/LINKCONTROL..................................................................123
Open-LoopSystem.......................................................................................................................123
Open-LoopResponse...................................................................................................................124
Controllability&Observability....................................................................................................124
CanonicalRealizations................................................................................................................124
StabilityAnalysis..........................................................................................................................125
DynamicShaping.........................................................................................................................126
ControllerDesign........................................................................................................................126
ObserverDesign..........................................................................................................................727
CONTINUINGEXERCISE4-BALL/BEAMSYSTEM..............................................................................129
Open-LoopSystem.......................................................................................................................729
Open-LoopResponse...................................................................................................................130
Controllability&Observability....................................................................................................130
CanonicalRealizations................................................................................................................130
StabilityAnalysis..........................................................................................................................131
DynamicShaping.........................................................................................................................132
ControllerDesign........................................................................................................................133
ObserverDesign..........................................................................................................................133
LQRDesign..................................................................................................................................134
CONTINUINGEXERCISE5-PROOF-MASSACTUATORSYSTEM...........................................................136
Open-LoopSystem.......................................................................................................................136
Open-LoopResponse...................................................................................................................137
Controllability&Observability....................................................................................................137
CanonicalRealizations................................................................................................................137
Minimality....................................................................................................................................138
StabilityAnalysis..........................................................................................................................138
DynamicShaping.........................................................................................................................139
ControllerDesign........................................................................................................................140
ObserverDesign..........................................................................................................................141
NumericalExercisesSolutions
Chapter1
NEl.la
01'
A=C=[10]0=0
-6-2B=:
NEl.lb
r
010
A=B=C=[31]D=0
-6-21
NE1.lc
01°一一°]
A=001B=。C=[1000]0=0
-6—8-4J
NEl.ld
-01oo-「°】
00100
A=B=C=[641o]0=0
0001°
-66-44-11-10
NE1.2c
A=02]B=DIC=[1]0=0
NE1.2t
-01
A=B=「°〕C=[10]0=0
-10-3JL'J
NE1.2c
-01°:
A=001B=。C=[100]0=0
-2]
-5-3
NE1.2d
010000
-101()010100o-■()0
4=B=c=D=
000100001000
50-5-0.500.5
Chapter2
NE2.1
x(t)=1/5-1/5exp(-5/2t)timeconstantT=2/5
NE2.2
a.Transferfunction:
2s+7
sA2+7s+12
b.Transferfunction:
1
sA2+2s+3
c.Transferfunction:
1
sA2+12s+2
d.Transferfunction:
9s^2+38s-2
sA2-5s-2
NE2.3
a.characteristicpolynomial:[132]
eigenvalues:-2,-1
b.characteristicpolynomial:[12010]
eigenvalues:-0.5132,-19.4868
c.characteristicpolynomial:[1010]
eigenvalues:0+3.1623i,03.1623i
d.characteristicpolynomial:[1200]
eigenvalues:0,-20
NE2.4
phi(4)=
0.12940.0113
-0.0677-0.0059
x(4)=
0.2702
-0.1412
NE2.5
xl(t)=1/8+1/8exp(-4t)1/4exp(-2t)
NE2.8NE2.9
NE2.10
a.Ad=
-0.87690
0-9.1231
b.Ad=
-1.35890
07.3589
c.Ad=
-0.5000+3.1225i0
0-0.50003.1225i
d.Ad=
3.16230
0-3.1623
Chapter3
NE3.1a
P=
1-4
1-5
determinantofP-1
Systemisfullystate-controllable
NE3.1b
P=
1-4
00
determinantofP0
SystemisNOTfullystate-controllable
NE3.1C
P=
1-20
2-3
determinantofP37
Systemisfullystate-controllable
NE3.1d
P=
01
1-2
determinantofP-1
Systemisfullystate-controllable
NE3.1e
P=
12
-1-2
determinantofP0
SystemisNOTfullystate-controllable
NE3,2a
Ac=
01
-20一9
Be=
0
1
Cc=
92
NE3.2b
WecannotfindCCFfromtheformulasincethetransformationmatrixissingular.
NE3.2c
Ac=
0.00001.0000
-10.0000-2.0000
Be=
0.0000
1.0000
Cc=
12
NE3.2d
Ac=
0.00001.0000
-10.0000-2.0000
Be=
0
1
Cc=
1.00002.0000
NE3.2e
WecannotfindCCFfromtheformulasincethetransformationmatrixissingular.
NE3.3
ApplythePopov-Belevitch-HautusRankTestforControllability
NE3.3a
TheeigenvaluesofAare:-5and-4
Fortheeigenvalue-5
-101
001
hasrank2
Fortheeigenvalue-4
001
011
hasrank2
Systemisfullystate-controllable
NE3.3b
TheeigenvaluesofAare:-5and-4
Fortheeigenvalue-5
-101
000
hasrank1
Fortheeigenvalue-4
001
010
hasrank2
SystemisNOTfullystate-controllable
NE3.3C
TheeigenvaluesofAare:-l+3iand-l-3i
Fortheeigenvalue-l+3i
-1.0000+3.0000i10.00001.0000
-1.00001.0000+3.0000i2.0000
hasrank2
Fortheeigenvalue-l-3i
-1.0000-3.0000i10.00001.0000
-1.00001.0000-3.0000i2.0000
hasrank2
Systemisfullystate-controllable
NE3.3d
TheeigenvaluesofAare:-l+3iand-l-3i
Fortheeigenvalue-l+3i
-1.0000+3.0000i-1.00000
10.00001.0000+3.0000i1.0000
hasrank2
Fortheeigenvalue-l-3i
-1.0000-3.00001-1.00000
10.00001.0000-3.0000i1.0000
hasrank2
Systemisfullystate-controllable
NE3.3e
TheeigenvaluesofAare:1and2
Fortheeigenvalue1
-101
10-1
hasrank1
Fortheeigenvalue2
001
11-1
hasrank2
SystemisNOTfullystate-controllable
Chapter4
NE4.1a
Q=
11
-4-5
determinantofQ-1
Systemisfullystate-observable
NE4.1b
Q=
10
-40
determinantofQ0
SystemisNOTfullystate-observable
NE4.1C
Q=
01
1-2
determinantofQ-1
Systemisfullystate-observable
NE4.1d
Q=
12
-20-3
determinantofQ37
Systemisfullystate-observable
NE4.Ie
Q=
11
11
determinantofQ0
SystemisNOTfullystate-observable
NE4.2a
Ao=
0-20
1-9
Bo=
9
2
Co=
01
NE4,2b
WecannotfindOCFfromtheformulasincethetransformationmatrixissingular.
NE4.2c
Ao=
0-10
1-2
Bo=
1
2
Co=
01
NE4.2d
Ao=
0.0000-10.0000
1.0000-2.0000
Bo=
1.0000
2.0000
Co=
0.00001.0000
NE4.2e
WecannotfindOCFfromtheformulasincethetransformationmatrixissingular.
NE4.3
ApplythePopov-Belevitch-HautusRankTestforObservability
NE4.3a
TheeigenvaluesofAare:-5and-4
Fortheeigenvalue-5
11
-10
00
hasrank2
Fortheeigenvalue-4
11
00
01
hasrank2
Systemisfullyobservable
NE4.3b
TheeigenvaluesofAare:-5and-4
Fortheeigenvalue-5
10
-10
00
hasrank1
Fortheeigenvalue-4
10
00
01
hasrank2
SystemisNOTfullyobservable
NE4.3c
TheeigenvaluesofAare:-l+3iand-l-3i
Fortheeigenvalue-l+3i
01.0000
-1.0000+3.0000i10.0000
-1.00001.0000+3.0000i
hasrank.2
Fortheeigenvalue-l-3i
01.0000
-1.0000-3.0000i10.0000
-1.00001.0000-3.0000i
hasrank2
Systemisfullyobservable
NE4.3d
TheeigenvaluesofAare:-l+3iand-l-3i
Fortheeigenvalue-l+3i
1.00002.0000
-1.0000+3.00001-1.0000
10.00001.0000+3.0000i
hasrank2
Fortheeigenvalue-l-3i
1.00002.0000
-1.0000-3.0000i-1.0000
10.00001.0000-3.0000i
hasrank2
Systemisfullyobservable
NE4.3e
TheeigenvaluesofAare:1and2
Fortheeigenvalue1
11
-10
10
hasrank2
Fortheeigenvalue2
11
00
11
hasrank1
SystemisNOTfullyobservable
Chapter5
NE5.1a
Transferfunction:
s+1
s^2+3s+2
1stateremoved,
a=
xl
xl-2
b=
ul
xl0.7071
c=
xl
yl1.414
d=
ul
yl0
NE5.1b
Transferfunction:
sA2+4s+5
A
s入3+7s2+17s+15
2statesremoved.
a=
xl
xl-3
b=
ul
xl0.1543
c=
xl
yl6.481
d=
ul
yl0
NE5.1C
Transferfunction:
s+3
sA3+7s"2+17s+15
1stateremoved.
a=
xlx2
xl1.398-5.077
x22.471-5.398
b=
ul
xl0.1943
x20.2686
c=
xlx2
yi-2.5621.854
d=
ul
yl0
NE5.1d
Transferfunction:
sA2+8s+25
s入4+15s入3+91s入2+255s+250
2statesremoved.
a=
xlx2
xl0.68131.215
x2-12.53-7.681
b=
ul
xl-0.001309
x20.03991
c=
xlx2
yi26.250.8612
d=
ul
yi0
NE5.1e
Transferfunction:
2sA2+9s+24
s入4+15s入3+91s入2+255s+250
a=
xlx2x3x4
xl000-250
x2100-255
x3010-91
x4001-15
b=
ul
xl24
x29
x32
x40
c=
xlx2x3x4
yi0001
d二
ul
yi0
NE5.IelookslikeOCFofNE5.Id;however,twonumbershavechangedandtherearenolonger
anycommonfactorsofthetransferfunctionnumeratoranddenominator.Thissystemis
alreadyminimal.
Chapter6
NE6.1a&NE6.3a
Eigenvalues:
-2+3.16i
-2-3.16i
LyapunovmatrixP:
2.020.04
0.040.13
Sylvester'sCriterion:
2.02
0.27
Systemisasymptoticallystable
NE6.1b&NE6.3b
Eigenvalues:
2+3.16i
2-3.16i
LyapunovmatrixP:
-2.020.04
0.04-0.13
Sylvester^sCriterion:
-2.02
0.27
Systemisunstable
NE6.1C&NE6.3c
Eigenvalues:
0
-4
???Errorusing==>lyap
Solutiondoesnotexistorisnotunique.
MATLABfunctionlyapfails.
Systemismarginallystableduetozeropole(andnopositivepoles).
NE6.1d&NE6.3d
Eigenvalues:
0+3.74i
0-3.74i
???Errorusing==>lyap
Solutiondoesnotexistorisnotunique.
MATLABfunctionlyapfails.
Systemismarginallystableduetozerorealpoles(andnopositiverealpoles).
NE6.2aSTABLENE6.2bUNSTABLE
NE6.2CMARGINALLYSTABLENE6.2dMARGINALLYSTABLE
Note:thebookdidnotgiveenoughinformationforNE6.2a-d;soforallcasesweassumed:
B=[0;l]
C=[10]
D[0]
NE6.4Given
f-fIC1=____I__-_s___2___=_(_s_—__2_)_(5__+_1_)=_(_s_+__1_)
$3+2s—-4s—8(5—2)($+2)~(s+2)~
a.Thesystemisbounded-input,bounded-outputstablebecausetheimpulseresponseh(t)=
satisfies
88Q
J|/z(r)|Jr<j(1+T)e~2Tdr=一<8
oo」
b.Thethree-dimensionalcontrollercanonicalformrealizationisspecifiedby
Theobservabilitymatrix
has|Q|=0,SOthisrealizationisnotobservable.Theeigenvaluesof&Fare-2,-2,2andsothis
realizationisnotasymptoticallystable.
c.Asecond-orderminimalrealization(incontrollercanonicalform)isspecifiedby
[11]
NE6.5Given
s~+s—2(s-l)(s+2)(s-l)
〃(s)
s'+2s--4s—8(s-2)(s+2>(5—2)(S+2)
a.Thesystemisnotbounded-input,bounded-outputstablebecausethezero-stateresponsetoaunitstep
inputis
y(t)
whichisunbounded.
b.Thethree-dimensionalobservercanonicalformrealizationisspecifiedby
()08-2
AZCF=BCCF=
1041CCCF=[0。1]
01-21
Thecontrollabilitymatrix
~-28-8
P=[BQCFA)CF^OCFAX:F3OCF]二124
1-14
Fare
has|P|=0,sothisrealizationisnotcontrollable.Theeigenvaluesof240c-2,-2,2andsothis
realizationisnotasymptoticallystable.
c.Asecond-orderminimalrealization(inobservercanonicalform)isspecifiedby
[01]
Chapter7
NE7.la(onepossiblesolution)
DomPole=-2
Poles2=-2-20
Poles3=-2-20-21
Poles4=-2-20-21-22
NE7.lb(onepossiblesolution)
zeta=-0.6671
wn=-1.4990
den2=1.00002.00002.2469
DomPoles=
-1+1.12i
-1-1.12i
Poles3=-1-1.121-1+1.12i-10
Poles4=-1-1.12i-1+1.12i-10-11
NE7.1C
ITAE2=1725
Poles2i=
-3.5000+3.5707i
-3.5000-3.5707i
ITAE3=18.7553.75125
Poles3i=
-2.6048+5.3405i
-2.6048-5.3405i
-3.5405
ITAE4=110.585337.5625
Poles4i=
-2.1199+6.3150i
-2.1199-6.3150i
-3.1301+2.0707i
-3.1301-2.0707i
NE7.2a&NE7.3a
K=3.33-4.33
NE7.2b&NE7.3b
K=141
NE7.2C&NE7.3C
K=149
NE7.2d&NE7.3d
K=12130
Chapter8
NE8.la(onepossiblesolution)
DomPoleO=-20
Poles20=-20-200
Poles30=-20-200-201
Poles40=-20-200-201-202
OM010J50^6^ol0^04045tt5
time(sec)
NE8.lb(onepossiblesolution)
DomPolesO=
-10.0000+11.1665i
-10.0000-11.1665i
Poles3=
1.0e+002*
-0.1000-0.1117i-0.1000+0.1117i-1.0000
Poles4=
1.0e+002*
-0.1000-0.1117i-0.1000+0.1117i-1.0000-1.1000
NE8.1C
Poles2iO=
-35.0000+35.707H
-35.0000-35.707H
Poles3iO=
-26.0475+53.405H
-26.0475-53.405H
-35.4050
Poles4iO=
-21.1991+63.1496i
-21.1991-63.1496i
-31.3009+20.7069i
-31.3009-20.7069i
NE8.2a&NE8.3a
L=
420.33
-385.33
NE8.2b&NE8.3b
L=
82
1338
NE8.2c&NE8.3C
L=
90
1994
NE8.2d&NE8.3d
L=
208
30
Chapter9
NE9.1a
KLQR=
0.4169-0.0093
-0.00930.1234
NE9.1b
KLQR=
1.10320.0828
0.08280.0725
NE9.1C
KLQR=
6.56690.0828
0.08281.0796
NE9.1d
KLQR=
21.9240.3
240.32694.9
NE9.2ai
KLQR=
0.3724-0.0153
-0.01530.1221
NE9.2aii
KLQR=
0.4505-0.0053
-0.00530.1241
NE9.2bi
KLQR=
1.10230.0822
0.08220.0721
NE9.2bii
KLQR=
1.10370.0830
0.08300.0727
NE9.2ci
KLQR=
4.70360.0822
0.08220.7630
NE9.2cii
KLQR=
9.22630.0830
0.08301.5271
NE9.2di
KLQR=
11.1123.5
123.51426.8
NE9.2dii
KLQR=
43.5472.3
472.35198.0
NE9.3TheparametervaluesarethesameasinExample9.5exceptthatnowR=p1forvariablep
andwefixcr=lyieldingtheperformanceindex
J=i£[^2(0+p2?2(0]jx2(1)
TheHamiltonianmatrixisgivenby
i
02
Hp
0
fromwhichwecomputethematrixexponential
{{e-lp+e,lp)
eHl
}(e-'lp+e',p)
Thisyieldsthe
X。)i(e-c-^P+ec-n/p)「1
A⑴1
古[(2+現3)。+(夕-1)""。]
fromwhichweconstruct
(j+l)e-"T"0-(0_l)e"fS_(/?+l)-(p-l)e2<f-|);p
-=第Jp+?+(p-De**。-^(p+D+Cp-lk20-1^
Theassociatedfeedbackgainis=P⑴,yieldingthetime-varyingclosed-loopstateequation
x(t)=-$PQ)x(f)x(0)=%
Theclosed-loopstateresponsefortheinitialstateJC(O)=1andp=0.1,1,and1()isshownbelow.
Regulationperformanceimproveswithdecreasingpcorr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高溫環(huán)境下焊接接頭疲勞壽命評估方法-洞察及研究
- 量子點合成與應用-洞察及研究
- 鑒別診斷方法優(yōu)化-洞察及研究
- 除凈劑在食品安全檢測中的重要性探討-洞察及研究
- 電刺激與神經再生的關系-洞察及研究
- 2026年網絡安全行業(yè)務高級經理面試題集
- 2026年網絡優(yōu)化專家常見問題及參考答案
- 基于深度學習的地理信息系統(tǒng)優(yōu)化模型
- 邊緣計算在智慧城市建設中的作用分析-洞察及研究
- 農村土地抵押融資的法律挑戰(zhàn)與對策-洞察及研究
- 成人留置導尿標準化護理與并發(fā)癥防控指南
- 2025年勞動關系協(xié)調師綜合評審試卷及答案
- CIM城市信息模型技術創(chuàng)新中心建設實施方案
- 二年級上冊100以內的數學加減混合口算題500道-A4直接打印
- 班級互動小游戲-課件共30張課件-小學生主題班會版
- 2025至2030全球及中國智慧機場建設行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025年二級造價師《土建工程實務》真題卷(附解析)
- 智慧農業(yè)管理中的信息安全對策
- 2025年河南省康養(yǎng)行業(yè)職業(yè)技能競賽健康管理師賽項技術工作文件
- 中學學生教育懲戒規(guī)則實施方案(2025修訂版)
- ISO 9001(DIS)-2026與ISO9001-2015英文標準對照版(編輯-2025年9月)
評論
0/150
提交評論