《線性狀態(tài)空間控制系統(tǒng)》習題答案_第1頁
《線性狀態(tài)空間控制系統(tǒng)》習題答案_第2頁
《線性狀態(tài)空間控制系統(tǒng)》習題答案_第3頁
《線性狀態(tài)空間控制系統(tǒng)》習題答案_第4頁
《線性狀態(tài)空間控制系統(tǒng)》習題答案_第5頁
已閱讀5頁,還剩136頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

SolutionsManualfor:

LinearState-SpaceControlSystems

RobertL.WilliamsIIandDouglasA.Lawrence

OhioUniversity

submittedtoWileyDecember,2006

TableofContents

NUMERICALEXERCISESSOLUTIONS.....................................................................................4

CHAPTER14

CHAPTER25

CHAPTER38

CHAPTER412

CHAPTER516

CHAPTER618

CHAPTER722

CHAPTER824

CHAPTER926

ANALYTICALEXERCISESSOLUTIONS....................................................................................30

CHAPTER13()

CHAPTER238

CHAPTER346

CHAPTER459

CHAPTER566

CHAPTER670

CHAPTER775

CHAPTER879

CHAPTER987

CONTINUINGMATLABEXERCISESSOLUTIONS....................................................................91

CONTINUINGMATLABEXERCISE1..................................................................................................91

CONTINUINGMATLABEXERCISE2..................................................................................................95

CONTINUINGMATLABEXERCISE3..................................................................................................99

CONTINUINGMATLABEXERCISE4.................................................................................................103

CONTINUINGEXERCISESSOLUTIONS....................................................................................108

CONTINUINGEXERCISE1-THREE-MASSTRANSLATIONALMECHANICALSYSTEM............................109

Open-LoopSystem.......................................................................................................................109

Open-LoopResponse...................................................................................................................109

Controllability&Observability....................................................................................................110

CanonicalRealizations................................................................................................................110

StabilityAnalysis..........................................................................................................................112

DynamicShaping.........................................................................................................................112

ControllerDesign........................................................................................................................113

ObserverDesign..........................................................................................................................115

CONTINUINGEXERCISE2-INVERTEDPENDULUM...........................................................................117

Open-LoopSystem.......................................................................................................................117

Open-LoopResponse...................................................................................................................117

Controllability&Observability....................................................................................................118

CanonicalRealizations................................................................................................................118

StabilityAnalysis..........................................................................................................................119

DynamicShaping.........................................................................................................................120

ControllerDesign........................................................................................................................120

LQRDesign..................................................................................................................................121

CONTINUINGEXERCISE3-ROBOTJOINT/LINKCONTROL..................................................................123

Open-LoopSystem.......................................................................................................................123

Open-LoopResponse...................................................................................................................124

Controllability&Observability....................................................................................................124

CanonicalRealizations................................................................................................................124

StabilityAnalysis..........................................................................................................................125

DynamicShaping.........................................................................................................................126

ControllerDesign........................................................................................................................126

ObserverDesign..........................................................................................................................727

CONTINUINGEXERCISE4-BALL/BEAMSYSTEM..............................................................................129

Open-LoopSystem.......................................................................................................................729

Open-LoopResponse...................................................................................................................130

Controllability&Observability....................................................................................................130

CanonicalRealizations................................................................................................................130

StabilityAnalysis..........................................................................................................................131

DynamicShaping.........................................................................................................................132

ControllerDesign........................................................................................................................133

ObserverDesign..........................................................................................................................133

LQRDesign..................................................................................................................................134

CONTINUINGEXERCISE5-PROOF-MASSACTUATORSYSTEM...........................................................136

Open-LoopSystem.......................................................................................................................136

Open-LoopResponse...................................................................................................................137

Controllability&Observability....................................................................................................137

CanonicalRealizations................................................................................................................137

Minimality....................................................................................................................................138

StabilityAnalysis..........................................................................................................................138

DynamicShaping.........................................................................................................................139

ControllerDesign........................................................................................................................140

ObserverDesign..........................................................................................................................141

NumericalExercisesSolutions

Chapter1

NEl.la

01'

A=C=[10]0=0

-6-2B=:

NEl.lb

r

010

A=B=C=[31]D=0

-6-21

NE1.lc

01°一一°]

A=001B=。C=[1000]0=0

-6—8-4J

NEl.ld

-01oo-「°】

00100

A=B=C=[641o]0=0

0001°

-66-44-11-10

NE1.2c

A=02]B=DIC=[1]0=0

NE1.2t

-01

A=B=「°〕C=[10]0=0

-10-3JL'J

NE1.2c

-01°:

A=001B=。C=[100]0=0

-2]

-5-3

NE1.2d

010000

-101()010100o-■()0

4=B=c=D=

000100001000

50-5-0.500.5

Chapter2

NE2.1

x(t)=1/5-1/5exp(-5/2t)timeconstantT=2/5

NE2.2

a.Transferfunction:

2s+7

sA2+7s+12

b.Transferfunction:

1

sA2+2s+3

c.Transferfunction:

1

sA2+12s+2

d.Transferfunction:

9s^2+38s-2

sA2-5s-2

NE2.3

a.characteristicpolynomial:[132]

eigenvalues:-2,-1

b.characteristicpolynomial:[12010]

eigenvalues:-0.5132,-19.4868

c.characteristicpolynomial:[1010]

eigenvalues:0+3.1623i,03.1623i

d.characteristicpolynomial:[1200]

eigenvalues:0,-20

NE2.4

phi(4)=

0.12940.0113

-0.0677-0.0059

x(4)=

0.2702

-0.1412

NE2.5

xl(t)=1/8+1/8exp(-4t)1/4exp(-2t)

NE2.8NE2.9

NE2.10

a.Ad=

-0.87690

0-9.1231

b.Ad=

-1.35890

07.3589

c.Ad=

-0.5000+3.1225i0

0-0.50003.1225i

d.Ad=

3.16230

0-3.1623

Chapter3

NE3.1a

P=

1-4

1-5

determinantofP-1

Systemisfullystate-controllable

NE3.1b

P=

1-4

00

determinantofP0

SystemisNOTfullystate-controllable

NE3.1C

P=

1-20

2-3

determinantofP37

Systemisfullystate-controllable

NE3.1d

P=

01

1-2

determinantofP-1

Systemisfullystate-controllable

NE3.1e

P=

12

-1-2

determinantofP0

SystemisNOTfullystate-controllable

NE3,2a

Ac=

01

-20一9

Be=

0

1

Cc=

92

NE3.2b

WecannotfindCCFfromtheformulasincethetransformationmatrixissingular.

NE3.2c

Ac=

0.00001.0000

-10.0000-2.0000

Be=

0.0000

1.0000

Cc=

12

NE3.2d

Ac=

0.00001.0000

-10.0000-2.0000

Be=

0

1

Cc=

1.00002.0000

NE3.2e

WecannotfindCCFfromtheformulasincethetransformationmatrixissingular.

NE3.3

ApplythePopov-Belevitch-HautusRankTestforControllability

NE3.3a

TheeigenvaluesofAare:-5and-4

Fortheeigenvalue-5

-101

001

hasrank2

Fortheeigenvalue-4

001

011

hasrank2

Systemisfullystate-controllable

NE3.3b

TheeigenvaluesofAare:-5and-4

Fortheeigenvalue-5

-101

000

hasrank1

Fortheeigenvalue-4

001

010

hasrank2

SystemisNOTfullystate-controllable

NE3.3C

TheeigenvaluesofAare:-l+3iand-l-3i

Fortheeigenvalue-l+3i

-1.0000+3.0000i10.00001.0000

-1.00001.0000+3.0000i2.0000

hasrank2

Fortheeigenvalue-l-3i

-1.0000-3.0000i10.00001.0000

-1.00001.0000-3.0000i2.0000

hasrank2

Systemisfullystate-controllable

NE3.3d

TheeigenvaluesofAare:-l+3iand-l-3i

Fortheeigenvalue-l+3i

-1.0000+3.0000i-1.00000

10.00001.0000+3.0000i1.0000

hasrank2

Fortheeigenvalue-l-3i

-1.0000-3.00001-1.00000

10.00001.0000-3.0000i1.0000

hasrank2

Systemisfullystate-controllable

NE3.3e

TheeigenvaluesofAare:1and2

Fortheeigenvalue1

-101

10-1

hasrank1

Fortheeigenvalue2

001

11-1

hasrank2

SystemisNOTfullystate-controllable

Chapter4

NE4.1a

Q=

11

-4-5

determinantofQ-1

Systemisfullystate-observable

NE4.1b

Q=

10

-40

determinantofQ0

SystemisNOTfullystate-observable

NE4.1C

Q=

01

1-2

determinantofQ-1

Systemisfullystate-observable

NE4.1d

Q=

12

-20-3

determinantofQ37

Systemisfullystate-observable

NE4.Ie

Q=

11

11

determinantofQ0

SystemisNOTfullystate-observable

NE4.2a

Ao=

0-20

1-9

Bo=

9

2

Co=

01

NE4,2b

WecannotfindOCFfromtheformulasincethetransformationmatrixissingular.

NE4.2c

Ao=

0-10

1-2

Bo=

1

2

Co=

01

NE4.2d

Ao=

0.0000-10.0000

1.0000-2.0000

Bo=

1.0000

2.0000

Co=

0.00001.0000

NE4.2e

WecannotfindOCFfromtheformulasincethetransformationmatrixissingular.

NE4.3

ApplythePopov-Belevitch-HautusRankTestforObservability

NE4.3a

TheeigenvaluesofAare:-5and-4

Fortheeigenvalue-5

11

-10

00

hasrank2

Fortheeigenvalue-4

11

00

01

hasrank2

Systemisfullyobservable

NE4.3b

TheeigenvaluesofAare:-5and-4

Fortheeigenvalue-5

10

-10

00

hasrank1

Fortheeigenvalue-4

10

00

01

hasrank2

SystemisNOTfullyobservable

NE4.3c

TheeigenvaluesofAare:-l+3iand-l-3i

Fortheeigenvalue-l+3i

01.0000

-1.0000+3.0000i10.0000

-1.00001.0000+3.0000i

hasrank.2

Fortheeigenvalue-l-3i

01.0000

-1.0000-3.0000i10.0000

-1.00001.0000-3.0000i

hasrank2

Systemisfullyobservable

NE4.3d

TheeigenvaluesofAare:-l+3iand-l-3i

Fortheeigenvalue-l+3i

1.00002.0000

-1.0000+3.00001-1.0000

10.00001.0000+3.0000i

hasrank2

Fortheeigenvalue-l-3i

1.00002.0000

-1.0000-3.0000i-1.0000

10.00001.0000-3.0000i

hasrank2

Systemisfullyobservable

NE4.3e

TheeigenvaluesofAare:1and2

Fortheeigenvalue1

11

-10

10

hasrank2

Fortheeigenvalue2

11

00

11

hasrank1

SystemisNOTfullyobservable

Chapter5

NE5.1a

Transferfunction:

s+1

s^2+3s+2

1stateremoved,

a=

xl

xl-2

b=

ul

xl0.7071

c=

xl

yl1.414

d=

ul

yl0

NE5.1b

Transferfunction:

sA2+4s+5

A

s入3+7s2+17s+15

2statesremoved.

a=

xl

xl-3

b=

ul

xl0.1543

c=

xl

yl6.481

d=

ul

yl0

NE5.1C

Transferfunction:

s+3

sA3+7s"2+17s+15

1stateremoved.

a=

xlx2

xl1.398-5.077

x22.471-5.398

b=

ul

xl0.1943

x20.2686

c=

xlx2

yi-2.5621.854

d=

ul

yl0

NE5.1d

Transferfunction:

sA2+8s+25

s入4+15s入3+91s入2+255s+250

2statesremoved.

a=

xlx2

xl0.68131.215

x2-12.53-7.681

b=

ul

xl-0.001309

x20.03991

c=

xlx2

yi26.250.8612

d=

ul

yi0

NE5.1e

Transferfunction:

2sA2+9s+24

s入4+15s入3+91s入2+255s+250

a=

xlx2x3x4

xl000-250

x2100-255

x3010-91

x4001-15

b=

ul

xl24

x29

x32

x40

c=

xlx2x3x4

yi0001

d二

ul

yi0

NE5.IelookslikeOCFofNE5.Id;however,twonumbershavechangedandtherearenolonger

anycommonfactorsofthetransferfunctionnumeratoranddenominator.Thissystemis

alreadyminimal.

Chapter6

NE6.1a&NE6.3a

Eigenvalues:

-2+3.16i

-2-3.16i

LyapunovmatrixP:

2.020.04

0.040.13

Sylvester'sCriterion:

2.02

0.27

Systemisasymptoticallystable

NE6.1b&NE6.3b

Eigenvalues:

2+3.16i

2-3.16i

LyapunovmatrixP:

-2.020.04

0.04-0.13

Sylvester^sCriterion:

-2.02

0.27

Systemisunstable

NE6.1C&NE6.3c

Eigenvalues:

0

-4

???Errorusing==>lyap

Solutiondoesnotexistorisnotunique.

MATLABfunctionlyapfails.

Systemismarginallystableduetozeropole(andnopositivepoles).

NE6.1d&NE6.3d

Eigenvalues:

0+3.74i

0-3.74i

???Errorusing==>lyap

Solutiondoesnotexistorisnotunique.

MATLABfunctionlyapfails.

Systemismarginallystableduetozerorealpoles(andnopositiverealpoles).

NE6.2aSTABLENE6.2bUNSTABLE

NE6.2CMARGINALLYSTABLENE6.2dMARGINALLYSTABLE

Note:thebookdidnotgiveenoughinformationforNE6.2a-d;soforallcasesweassumed:

B=[0;l]

C=[10]

D[0]

NE6.4Given

f-fIC1=____I__-_s___2___=_(_s_—__2_)_(5__+_1_)=_(_s_+__1_)

$3+2s—-4s—8(5—2)($+2)~(s+2)~

a.Thesystemisbounded-input,bounded-outputstablebecausetheimpulseresponseh(t)=

satisfies

88Q

J|/z(r)|Jr<j(1+T)e~2Tdr=一<8

oo」

b.Thethree-dimensionalcontrollercanonicalformrealizationisspecifiedby

Theobservabilitymatrix

has|Q|=0,SOthisrealizationisnotobservable.Theeigenvaluesof&Fare-2,-2,2andsothis

realizationisnotasymptoticallystable.

c.Asecond-orderminimalrealization(incontrollercanonicalform)isspecifiedby

[11]

NE6.5Given

s~+s—2(s-l)(s+2)(s-l)

〃(s)

s'+2s--4s—8(s-2)(s+2>(5—2)(S+2)

a.Thesystemisnotbounded-input,bounded-outputstablebecausethezero-stateresponsetoaunitstep

inputis

y(t)

whichisunbounded.

b.Thethree-dimensionalobservercanonicalformrealizationisspecifiedby

()08-2

AZCF=BCCF=

1041CCCF=[0。1]

01-21

Thecontrollabilitymatrix

~-28-8

P=[BQCFA)CF^OCFAX:F3OCF]二124

1-14

Fare

has|P|=0,sothisrealizationisnotcontrollable.Theeigenvaluesof240c-2,-2,2andsothis

realizationisnotasymptoticallystable.

c.Asecond-orderminimalrealization(inobservercanonicalform)isspecifiedby

[01]

Chapter7

NE7.la(onepossiblesolution)

DomPole=-2

Poles2=-2-20

Poles3=-2-20-21

Poles4=-2-20-21-22

NE7.lb(onepossiblesolution)

zeta=-0.6671

wn=-1.4990

den2=1.00002.00002.2469

DomPoles=

-1+1.12i

-1-1.12i

Poles3=-1-1.121-1+1.12i-10

Poles4=-1-1.12i-1+1.12i-10-11

NE7.1C

ITAE2=1725

Poles2i=

-3.5000+3.5707i

-3.5000-3.5707i

ITAE3=18.7553.75125

Poles3i=

-2.6048+5.3405i

-2.6048-5.3405i

-3.5405

ITAE4=110.585337.5625

Poles4i=

-2.1199+6.3150i

-2.1199-6.3150i

-3.1301+2.0707i

-3.1301-2.0707i

NE7.2a&NE7.3a

K=3.33-4.33

NE7.2b&NE7.3b

K=141

NE7.2C&NE7.3C

K=149

NE7.2d&NE7.3d

K=12130

Chapter8

NE8.la(onepossiblesolution)

DomPoleO=-20

Poles20=-20-200

Poles30=-20-200-201

Poles40=-20-200-201-202

OM010J50^6^ol0^04045tt5

time(sec)

NE8.lb(onepossiblesolution)

DomPolesO=

-10.0000+11.1665i

-10.0000-11.1665i

Poles3=

1.0e+002*

-0.1000-0.1117i-0.1000+0.1117i-1.0000

Poles4=

1.0e+002*

-0.1000-0.1117i-0.1000+0.1117i-1.0000-1.1000

NE8.1C

Poles2iO=

-35.0000+35.707H

-35.0000-35.707H

Poles3iO=

-26.0475+53.405H

-26.0475-53.405H

-35.4050

Poles4iO=

-21.1991+63.1496i

-21.1991-63.1496i

-31.3009+20.7069i

-31.3009-20.7069i

NE8.2a&NE8.3a

L=

420.33

-385.33

NE8.2b&NE8.3b

L=

82

1338

NE8.2c&NE8.3C

L=

90

1994

NE8.2d&NE8.3d

L=

208

30

Chapter9

NE9.1a

KLQR=

0.4169-0.0093

-0.00930.1234

NE9.1b

KLQR=

1.10320.0828

0.08280.0725

NE9.1C

KLQR=

6.56690.0828

0.08281.0796

NE9.1d

KLQR=

21.9240.3

240.32694.9

NE9.2ai

KLQR=

0.3724-0.0153

-0.01530.1221

NE9.2aii

KLQR=

0.4505-0.0053

-0.00530.1241

NE9.2bi

KLQR=

1.10230.0822

0.08220.0721

NE9.2bii

KLQR=

1.10370.0830

0.08300.0727

NE9.2ci

KLQR=

4.70360.0822

0.08220.7630

NE9.2cii

KLQR=

9.22630.0830

0.08301.5271

NE9.2di

KLQR=

11.1123.5

123.51426.8

NE9.2dii

KLQR=

43.5472.3

472.35198.0

NE9.3TheparametervaluesarethesameasinExample9.5exceptthatnowR=p1forvariablep

andwefixcr=lyieldingtheperformanceindex

J=i£[^2(0+p2?2(0]jx2(1)

TheHamiltonianmatrixisgivenby

i

02

Hp

0

fromwhichwecomputethematrixexponential

{{e-lp+e,lp)

eHl

}(e-'lp+e',p)

Thisyieldsthe

X。)i(e-c-^P+ec-n/p)「1

A⑴1

古[(2+現3)。+(夕-1)""。]

fromwhichweconstruct

(j+l)e-"T"0-(0_l)e"fS_(/?+l)-(p-l)e2<f-|);p

-=第Jp+?+(p-De**。-^(p+D+Cp-lk20-1^

Theassociatedfeedbackgainis=P⑴,yieldingthetime-varyingclosed-loopstateequation

x(t)=-$PQ)x(f)x(0)=%

Theclosed-loopstateresponsefortheinitialstateJC(O)=1andp=0.1,1,and1()isshownbelow.

Regulationperformanceimproveswithdecreasingpcorr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論