2022-2023學(xué)年貴港市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第1頁
2022-2023學(xué)年貴港市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第2頁
2022-2023學(xué)年貴港市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第3頁
2022-2023學(xué)年貴港市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第4頁
2022-2023學(xué)年貴港市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦點坐標為,,點是雙曲線右支上的一點,,的面積為,則該雙曲線的離心率為()A. B. C. D.2.在二項式的展開式中任取2項,則取出的2項中系數(shù)均為偶數(shù)的概率為()A. B. C. D.3.已知函數(shù)在時取得極大值,則的取值范圍是()A. B. C. D.4.設(shè)等比數(shù)列的前n項和為,且滿足,則A.4 B.5 C.8 D.95.如果,則的解析式為()A. B.C. D.6.即將畢業(yè),4名同學(xué)與數(shù)學(xué)老師共5人站成一排照相,要求數(shù)學(xué)老師站中間,則不同的站法種數(shù)是A.120 B.96 C.36 D.247.已知集合,則等于()A. B. C. D.8.點是橢圓上的一個動點,則的最大值為(

)A. B. C. D.9.已知函數(shù)的導(dǎo)數(shù)是,若,都有成立,則()A. B.C. D.10.設(shè)實數(shù)x,y滿足約束條件3x-2y+4≥0x+y-4≤0x-ay-2≤0,已知z=2x+y的最大值是7,最小值是A.6B.-6C.-1D.111.已知展開式中常數(shù)項為1120,實數(shù)是常數(shù),則展開式中各項系數(shù)的和是A. B. C. D.12.下列命題中正確的是()A.若為真命題,則為真命題B.“”是“”的充要條件C.命題“,則或”的逆否命題為“若或,則”D.命題:,使得,則:,使得二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在R上的可導(dǎo)函數(shù)f(x)滿足,若,則實數(shù)m的取值范圍是______.14.在中,,,,點在線段上,若,則________.15.設(shè)為拋物線的焦點,為拋物線上兩點,若,則____________.16.若隨機變量,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)的最小正周期及單調(diào)遞增區(qū)間;(2)當時,求的最小值.18.(12分)如圖,三棱柱的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是是的中點.(1)求證:平面;(2)求二面角的大??;19.(12分)已知函數(shù),.(1)當時,求的最小值;(2)當時,若存在,使得對任意的恒成立,求的取值范圍.20.(12分)如圖,多面體中,兩兩垂直,且,,,.(Ⅰ)若點在線段上,且,求證:平面;(Ⅱ)求直線與平面所成的角的正弦值;(Ⅲ)求銳二面角的余弦值.21.(12分)若函數(shù)(1)若,求曲線在點處的切線方程;(2)若在上只有一個極值,且該極值小于,求的取值范圍.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若對于一切,均有成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由的面積為,可得,再由余弦定理求出,根據(jù)雙曲線的定義可得,從而可得結(jié)論.【詳解】因為的面積為,,所以,可得,,,所以離心率,故選B.【點睛】本題主要考查雙曲線的定義及離心率,屬于中檔題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.2、C【解析】

二項式的展開式共十項,從中任取2項,共有種取法,再研究其系數(shù)為偶數(shù)情況有幾個,從中取兩個有幾種取法得出答案.【詳解】二項式的展開式共十項,從中任取2項,共有種取法,展開式系數(shù)為偶數(shù)的有,共六個,取出的2項中系數(shù)均為偶數(shù)的取法有種取法,取出的2項中系數(shù)均為偶數(shù)的概率為故選:【點睛】本題考查二項式定理及等可能事件的概率,正確求解本題的關(guān)鍵是找出哪些項的系數(shù)是偶數(shù),求出取出的2項中系數(shù)均為偶數(shù)的事件包含的基本事件數(shù).3、A【解析】

先對進行求導(dǎo),然后分別討論和時的極值點情況,隨后得到答案.【詳解】由得,當時,,由,得,由,得.所以在取得極小值,不符合;當時,令,得或,為使在時取得極大值,則有,所以,所以選A.【點睛】本題主要考查函數(shù)極值點中含參問題,意在考查學(xué)生的分析能力和計算能力,對學(xué)生的分類討論思想要求較高,難度較大.4、D【解析】

由等比數(shù)列的通項公式和求和公式代入題中式子可求?!驹斀狻坑深}意可得,,選D.【點睛】本題考查數(shù)列通項公式和求和公式基本量的運算。5、C【解析】

根據(jù)配湊法,即可求得的解析式,注意定義域的范圍即可.【詳解】因為,即令,則,即所以選C【點睛】本題考查了配湊法在求函數(shù)解析式中的應(yīng)用,注意定義域的范圍,屬于基礎(chǔ)題.6、D【解析】分析:數(shù)學(xué)老師位置固定,只需要排學(xué)生的位置即可.詳解:根據(jù)題意得到數(shù)學(xué)老師位置固定,其他4個學(xué)生位置任意,故方法種數(shù)有種,即24種.故答案為:D.點睛:解答排列、組合問題的角度:解答排列、組合應(yīng)用題要從“分析”、“分辨”、“分類”、“分步”的角度入手.(1)“分析”就是找出題目的條件、結(jié)論,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨別是排列還是組合,對某些元素的位置有、無限制等;(3)“分類”就是將較復(fù)雜的應(yīng)用題中的元素分成互相排斥的幾類,然后逐類解決;(4)“分步”就是把問題化成幾個互相聯(lián)系的步驟,而每一步都是簡單的排列、組合問題,然后逐步解決.7、C【解析】

由不等式性質(zhì)求出集合A、B,由交集的定義求出可得答案.【詳解】解:可得;,可得=故選C.【點睛】本題考查了交集及其運算,求出集合A、B并熟練掌握交集的定義是解題的關(guān)鍵.8、A【解析】

設(shè),由此,根據(jù)三角函數(shù)的有界性可得結(jié)果.【詳解】橢圓方程為,設(shè),則(其中),故,的最大值為,故選A.【點睛】本題主要考查橢圓參數(shù)方程的應(yīng)用,輔助角公式的應(yīng)用,屬于中檔題.利用公式可以求出:①的周期;②單調(diào)區(qū)間(利用正弦函數(shù)的單調(diào)區(qū)間可通過解不等式求得);③值域;④對稱軸及對稱中心(由可得對稱軸方程,由可得對稱中心橫坐標.9、D【解析】分析:由題意構(gòu)造函數(shù),結(jié)合函數(shù)的單調(diào)性整理計算即可求得最終結(jié)果.詳解:令,則:,由,都有成立,可得在區(qū)間內(nèi)恒成立,即函數(shù)是區(qū)間內(nèi)單調(diào)遞減,據(jù)此可得:,即,則.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構(gòu)造一個適當?shù)暮瘮?shù),利用它的單調(diào)性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.10、D【解析】試題分析:畫出不等式組表示的區(qū)域如圖,從圖形中看出當不成立,故,當直線經(jīng)過點時,取最大值,即,解之得,所以應(yīng)選D.考點:線性規(guī)劃的知識及逆向運用.【易錯點晴】本題考查的是線性約束條件與數(shù)形結(jié)合的數(shù)學(xué)思想的求參數(shù)值的問題,解答時先構(gòu)建平面直角坐標系,準確的畫出滿足題設(shè)條件3x-2y+4≥0x+y-4≤0x-ay-2≤0的平面區(qū)域,然后分類討論參數(shù)的符號,進而移動直線,發(fā)現(xiàn)當該直線經(jīng)過點時取得最大值,以此建立方程,通過解方程求出參數(shù)的值.11、C【解析】分析:由展開式通項公式根據(jù)常數(shù)項求得,再令可得各項系數(shù)和.詳解:展開式通項為,令,則,∴,,所以展開式中各項系數(shù)和為或.故選C.點睛:賦值法在求二項展開式中系數(shù)和方面有重要的作用,設(shè)展開式為,如求所有項的系數(shù)和可令變量,即系數(shù)為,而奇數(shù)項的系數(shù)和為,偶數(shù)項系數(shù)為,還可以通過賦值法證明一些組合恒等式.12、B【解析】

根據(jù)且、或命題真假性判斷A選項真假,根據(jù)充要條件知識判斷B選項真假,根據(jù)逆否命題的概念判斷C選項真假,根據(jù)特稱命題的否定是全稱命題判斷D選項真假.【詳解】對于A選項,當真時,可能一真一假,故可能是假命題,故A選項為假命題.對于B選項,根據(jù)基本不等式和充要條件的知識可知,B選項為真命題.對于C選項,原命題的逆否命題為“若且,則”,故C選項為假命題.對于D選項,原命題為特稱命題,其否定是全稱命題,要注意否定結(jié)論,即:,使得.綜上所述,本小題選B.【點睛】本小題主要考查還有簡單邏輯連接詞真假性,考查充要條件,考查逆否命題,考查特稱命題的否定是全稱命題等知識,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

試題分析:令,則,故函數(shù)在上單調(diào)遞減,又由題設(shè)可得,故,即,答案為.考點:導(dǎo)數(shù)及運用.14、【解析】

根據(jù)題意,由于題目中給出了較多的邊和角,根據(jù)題目列出對應(yīng)的正余弦定理的關(guān)系式,能較快解出BD的長度.【詳解】根據(jù)題意,以點A為原點,AC所在直線為x軸建立平面直角坐標系。過點B作垂直AC交AC于點E,則,又因為在中,,所以,,故.【點睛】本題主要考查學(xué)生對于正余弦定理的掌握,將幾何問題轉(zhuǎn)化為坐標系下的問題是解決本題的關(guān)鍵.15、12【解析】分析:過點兩點分別作準線的垂線,過點作的垂線,垂足為,在直角三角形中,求得,進而得直線的斜率為,所以直線的方程,聯(lián)立方程組,求得點的坐標,即可求得答案.詳解:過點兩點分別作準線的垂線,過點作的垂線,垂足為,設(shè),則,因為,所以,在直角三角形中,,,所以,所以直線的斜率為,所以直線的方程為,將其代入拋物線的方程可得,解得,所以點,又由,所以所以.點睛:本題主要考查了主要了直線與拋物線的位置關(guān)系的應(yīng)用問題,同時涉及到共線向量和解三角形的知識,解答本題的關(guān)鍵是利用拋物線的定義作出直角三角形,確定直線的斜率,得出直線的方程,著重考查了數(shù)形結(jié)合思想和推理與運算能力.16、【解析】

由條件求得,可得正態(tài)分布曲線的圖象關(guān)于直線對稱.求得的值,根據(jù)對稱性,即可求得答案.【詳解】隨機變量,且,可得,正態(tài)分布曲線的圖象關(guān)于直線對稱.,故答案為:.【點睛】本題考查了正態(tài)分布曲線的特點及曲線所表示的意義,考查了分析能力和計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)由題意利用正弦函數(shù)的周期性、單調(diào)性,求得的最小正周期及單調(diào)遞增區(qū)間.(2)由題意利用正弦函數(shù)的定義域和值域,求得當時,的最小值.【詳解】解:(1)最小正周期為.令,得,…所以的單調(diào)遞增區(qū)間為.(2)因為,所以,所以,所以,所以的最小值為.【點睛】本題主要考查正弦函數(shù)的周期性、單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.18、(1)證明見解析;(2).【解析】分析:⑴設(shè)與相交于點,連接,根據(jù)題意可得,利用線面平行的判定定理得到平面;⑵建立空間直角坐標系,求出法向量,然后運用公式計算二面角的大小詳解:(1)設(shè)與相交于點P,連接PD,則P為中點,D為AC中點,PD//,又PD平面D,//平面D.(2)如圖建立空間直角坐標系,則D(0,0,0),A(1,0,0),(1,0,),B(0,,0),(0,,)=(-1,,-),=(-1,0,-)設(shè)平面的法向量為n=(x,y,z)則nn則有,得n=(,0,1)由題意,知=(0,0,)是平面ABD的一個法向量。設(shè)n與所成角為,則,二面角的大小是.點睛:本題主要考查了線面平行的判定定理,要求二面角平面角的大小,可以采用建立空間直角坐標系的方法,給出點坐標,求出各面上的法向量,利用公式即可求出角的大小。19、(1)見解析;(2)【解析】

(1)求出f(x)的定義域,求導(dǎo)數(shù)f′(x),得其極值點,按照極值點a在[1,e2]的左側(cè)、內(nèi)部、右側(cè)三種情況進行討論,可得其最小值;(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,由(1)知f(x)在[e,e2]上遞增,可得f(x)min,利用導(dǎo)數(shù)可判斷g(x)在[﹣2,0]上的單調(diào)性,可得g(x)min,由f(x)min<g(x)min,可求得a的范圍;【詳解】(1)f(x)的定義域為(0,+∞),f′(x)(a∈R),當a≤1時,x∈[1,e2],f′(x)≥0,f(x)為增函數(shù),所以f(x)min=f(1)=1﹣a;當1<a<e2時,x∈[1,a],f′(x)≤0,f(x)為減函數(shù),x∈[a,e2],f′(x)≥0,f(x)為增函數(shù),所以f(x)min=f(a)=a﹣(a+1)lna﹣1;當a≥e2時,x∈[1,e2],f′(x)≤0,f(x)為減函數(shù),所以f(x)min=f(e2)=e2﹣2(a+1);綜上,當a≤1時,f(x)min=1﹣a;當1<a<e2時,f(x)min=a﹣(a+1)lna﹣1;當a≥e2時,f(x)min=e2﹣2(a+1);(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,當a<1時,由(1)可知,x∈[e,e2],f(x)為增函數(shù),∴f(x1)min=f(e)=e﹣(a+1)g′(x)=x+ex﹣xex﹣ex=x(1﹣ex),當x∈[﹣2,0]時g′(x)≤0,g(x)為減函數(shù),g(x)min=g(0)=1,∴e﹣(a+1)1,a,∴a∈(,1).【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及求閉區(qū)間上函數(shù)的最值,考查分類討論思想,考查了分析解決問題的能力,將恒成立問題轉(zhuǎn)化為函數(shù)的最值是常用方法,屬于較難題.20、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)【解析】試題分析:(Ⅰ)分別取的中點,連接,由已知條件推導(dǎo)出四邊形是平行四邊形,從而得到,即可證明平面;(Ⅱ)以點為原點,分別以所在直線為軸,軸,軸建立空間直角坐標系,利用法向量即可求出直線與平面所成的角的正弦值;(Ⅲ)分別求出平面的法向量和平面的法向量,利用向量法即可求出二面角的余弦值.試題解析:(Ⅰ)分別取的中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論