2023屆新疆生產(chǎn)建設兵團中考試題猜想數(shù)學試卷含解析_第1頁
2023屆新疆生產(chǎn)建設兵團中考試題猜想數(shù)學試卷含解析_第2頁
2023屆新疆生產(chǎn)建設兵團中考試題猜想數(shù)學試卷含解析_第3頁
2023屆新疆生產(chǎn)建設兵團中考試題猜想數(shù)學試卷含解析_第4頁
2023屆新疆生產(chǎn)建設兵團中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.2.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π3.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°4.下列選項中,能使關于x的一元二次方程ax2﹣4x+c=0一定有實數(shù)根的是()A.a(chǎn)>0 B.a(chǎn)=0 C.c>0 D.c=05.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補6.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°7.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(chǎn)(x﹣6)(x+2) B.a(chǎn)(x﹣3)(x+4) C.a(chǎn)(x2﹣4x﹣12) D.a(chǎn)(x+6)(x﹣2)8.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)9.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.10.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐二、填空題(共7小題,每小題3分,滿分21分)11.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.12.因式分解:3a3﹣6a2b+3ab2=_____.13.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.14.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(shù)(x<0)的圖象上,則k=.15.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.16.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.17.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內(nèi)壁離杯底4cm的點B處有乙滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對的點A處,則螞蟻從外幣A處到達內(nèi)壁B處的最短距離為_______.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中a是方程a(a+1)=0的解.19.(5分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?20.(8分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)21.(10分)如圖,在矩形ABCD中,AB=1DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=1.求線段EC的長;求圖中陰影部分的面積.22.(10分)某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.該商場兩次共購進這種運動服多少套?如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?23.(12分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.24.(14分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:左視圖如圖所示:故選C.2、B【解析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.3、C【解析】

根據(jù)扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.4、D【解析】試題分析:根據(jù)題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.5、C【解析】

分清截線和被截線,根據(jù)平行線的性質進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質,熟記性質并準確識圖是解題的關鍵.6、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.7、A【解析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關鍵.8、C【解析】

過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數(shù)的綜合問題,涉及全等三角形的性質與判定,反比例函數(shù)的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.9、D【解析】

根據(jù)展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.10、C【解析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.二、填空題(共7小題,每小題3分,滿分21分)11、6.【解析】分析:設扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關鍵是根據(jù)弧長公式解答.12、3a(a﹣b)1【解析】

首先提取公因式3a,再利用完全平方公式分解即可.【詳解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案為:3a(a﹣b)1.【點睛】此題考查多項式的因式分解,多項式分解因式時如果有公因式必須先提取公因式,然后再利用公式法分解因式,根據(jù)多項式的特點用適合的分解因式的方法是解題的關鍵.13、【解析】

把(1,4)代入兩函數(shù)表達式可得:a+b=4,再根據(jù)“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.14、-4.【解析】

過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據(jù)銳角三角函數(shù)的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數(shù)的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特點、等邊三角形的性質、解直角三角函數(shù)等知識,難度適中.15、540°【解析】

根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和16、【解析】

設該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關鍵.17、20cm.【解析】

將杯子側面展開,建立A關于EF的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側面展開,作A關于EF的對稱點A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.三、解答題(共7小題,滿分69分)18、【解析】

根據(jù)分式運算性質,先化簡,再求出方程的根a=0或-1,分式有意義分母不等于0,所以將a=-1代入即可求解.【詳解】解:原式==∵a(a+1)=0,解得:a=0或-1,由題可知分式有意義,分母不等于0,∴a=-1,將a=-1代入得,原式=【點睛】本題考查了分式的化簡求值,中等難度,根據(jù)分式有意義的條件代值計算是解題關鍵.19、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】

(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質求極值.【詳解】解:(1)設,由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當時,隨的增大而增大,當時,隨的增大而減小,當售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應用.20、見解析【解析】

作∠AOB的角平分線和線段MN的垂直平分線,它們的交點即是要求作的點P.【詳解】解:①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GH交OE于點P.點P即為所求.【點睛】本題考查了角平分線和線段垂直平分線的尺規(guī)作法,熟練掌握角平分線和線段垂直平分線的的作圖步驟是解答本題的關鍵.21、(1);(1).【解析】

(1)根據(jù)矩形的性質得出AB=AE=4,進而利用勾股定理得出DE的長,即可得出答案;(1)利用銳角三角函數(shù)關系得出∠DAE=60°,進而求出圖中陰影部分的面積為:,求出即可.【詳解】解:(1)∵在矩形ABCD中,AB=1DA,DA=1,∴AB=AE=4,∴DE=,∴EC=CD-DE=4-1;(1)∵sin∠DEA=,∴∠DEA=30°,∴∠EAB=30°,∴圖中陰影部分的面積為:S扇形FAB-S△DAE-S扇形EAB=.【點睛】此題主要考查了扇形的面積計算以及勾股定理和銳角三角函數(shù)關系等知識,根據(jù)已知得出DE的長是解題關鍵.22、(1)商場兩次共購進這種運動服600套;(2)每套運動服的售價至少是200元.【解析】

(1)設商場第一次購進套運動服,根據(jù)“第二批所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元”即可列方程求解;(2)設每套運動服的售價為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論