一元二次方程根與系數(shù)的關(guān)系_第1頁
一元二次方程根與系數(shù)的關(guān)系_第2頁
一元二次方程根與系數(shù)的關(guān)系_第3頁
一元二次方程根與系數(shù)的關(guān)系_第4頁
一元二次方程根與系數(shù)的關(guān)系_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1.一元二次方程的解法2.求根公式

復(fù)習(xí)提問數(shù)學(xué)活動一一元二次方程ax2+bx+c=0(a≠0)的求根公式:X=(b2-4ac≥0)1.

填表,觀察、猜想

數(shù)學(xué)活動二

方程

x1,,x2

x1,+x2

x1.x2

x2-2x+1=0

1,121x2+3x-10=02,-5-3-10x2+5x+4=0-1,-4-54問題:你發(fā)現(xiàn)什么規(guī)律?①用語言敘述你發(fā)現(xiàn)的規(guī)律;②

x2+px+q=0的兩根x1,,x2用式子表示你發(fā)現(xiàn)的規(guī)律。

根與系數(shù)關(guān)系如果關(guān)于x的方程的兩根是,,則:如果方程二次項(xiàng)系數(shù)不為1呢?數(shù)學(xué)活動三

方程x1,,x2

x1,+x2

x1.x2

2x2-3x-2=0

3x2-4x+1=0

問題:上面發(fā)現(xiàn)的結(jié)論在這里成立嗎?請完善規(guī)律;①用語言敘述發(fā)現(xiàn)的規(guī)律;②

ax2+bx+c=0的兩根x1,,x2用式子表示你發(fā)現(xiàn)的規(guī)律.一元二次方程的根與系數(shù)的關(guān)系:如果方程ax2+bx+c=0(a≠0)的兩個根是X1,X2,那么X1+x2=,X1x2=-(韋達(dá)定理)注:能用根與系數(shù)的關(guān)系的前提條件為b2-4ac≥0韋達(dá)(1540-1603)

韋達(dá)是法國十六世紀(jì)最有影響的數(shù)學(xué)家之一。第一個引進(jìn)系統(tǒng)的代數(shù)符號,并對方程論做了改進(jìn)。

他生于法國的普瓦圖。年青時學(xué)習(xí)法律當(dāng)過律師,后從事政治活動,當(dāng)過議會的議員,在對西班牙的戰(zhàn)爭中曾為政府破譯敵軍的密碼。韋達(dá)還致力于數(shù)學(xué)研究,第一個有意識地和系統(tǒng)地使用字母來表示已知數(shù)、未知數(shù)及其乘冪,帶來了代數(shù)學(xué)理論研究的重大進(jìn)步。韋達(dá)討論了方程根的各種有理變換,發(fā)現(xiàn)了方程根與系數(shù)之間的關(guān)系(所以人們把敘述一元二次方程根與系數(shù)關(guān)系的結(jié)論稱為“韋達(dá)定理”)。

韋達(dá)在歐洲被尊稱為“代數(shù)學(xué)之父”。一元二次方程根與系數(shù)關(guān)系的證明:X1+x2=+==-X1x2=●===1、x2-2x-1=02、2x2-3x+=03、2x2-6x=04、3x2=4x1+x2=2x1x2=-1x1+x2=x1+x2=3x1+x2=0x1x2=x1x2=0x1x2=-示例典型題講解:

例1已知x1,x2

是5x2-7x-3=0的兩個根,求x12+x22與的值.變式練習(xí):設(shè)x1,x2是方程2x2+4x-3=0的兩個根,利用根與系數(shù)的關(guān)系,求下列各式的值。(2)

(1)(3)(x1-x2)2典型題講解:

例2已知一個一元二次方程的二次項(xiàng)系數(shù)是3,它的兩個根分別是,1.請寫出這個方程.試一試1、已知方程3x2-19x+m=0的一個根是1,求它的另一個根及m的值。2、設(shè)x1,x2是方程2x2+4x-3=0的兩個根,求(x1+1)(x2+1)的值。解:設(shè)方程的另一個根為x1,則x1+1=,∴x1=,又x1●1=,∴m=3x1=16解:由根與系數(shù)的關(guān)系,得x1+x2=-2,x1·x2=∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=-2+()+1=歸納小結(jié):

通過本節(jié)課的學(xué)習(xí)你學(xué)到了那些知識

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論