黑龍江省哈爾濱道外區(qū)四校聯考2022-2023學年數學八下期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
黑龍江省哈爾濱道外區(qū)四校聯考2022-2023學年數學八下期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
黑龍江省哈爾濱道外區(qū)四校聯考2022-2023學年數學八下期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
黑龍江省哈爾濱道外區(qū)四校聯考2022-2023學年數學八下期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
黑龍江省哈爾濱道外區(qū)四校聯考2022-2023學年數學八下期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.菱形的對角線不一定具有的性質是()A.互相平分 B.互相垂直 C.每一條對角線平分一組對角 D.相等2.如圖,在中,的平分線交于,若,,則的長度為()A. B. C. D.3.下列圖案中,不是中心對稱圖形的是()A.B.C.D.4.已知a是方程x2-3x-1=0的一個根,則代數式A.6 B.5 C.12+213 D.5.下列關系式中,不是函數關系的是()A.y=-x(x<0) B.y=±x(x>0) C.y=x(x>0) D.y=﹣x(x>0)6.如圖,是一張平行四邊形紙片ABCD(AB<BC),要求利用所學知識將它變成一個菱形,甲、乙兩位同學的作法分別如下:對于甲、乙兩人的作法,可判斷()A.甲、乙均正確 B.甲、乙均錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確7.下列各組數據中,能做為直角三角形三邊長的是()。A.1、2、3 B.3、5、7 C.32,42,52 D.5、12、138.將拋物線平移,使它平移后圖象的頂點為,則需將該拋物線()A.先向右平移個單位,再向上平移個單位 B.先向右平移個單位,再向下平移個單位C.先向左平移個單位,再向上平移個單位 D.先向左平移個單位,再向下平移個單位9.某校九年級班全體學生2016年初中畢業(yè)體育考試的成績統計如表:成績分15192224252830人數人2566876根據表中的信息判斷,下列結論中錯誤的是A.該班一共有40名同學 B.該班學生這次考試成績的眾數是25分C.該班學生這次考試成績的中位數是25分 D.該班學生這次考試成績的平均數是25分10.對于一次函數,下列結論①隨的增大而減小;②函數的圖象不經過第三象限;③函數的圖象向下平移4個單位得;④函數的圖象與軸的交點坐標是.其中,錯誤的有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,菱形ABCD的對角線AC與BD相交于點O,OE∥DC交BC于點E,AD=10cm,則OE的長為_____.12.若關于x的分式方程有增根,則a的值為_______13.如圖,在中,,,,為的中點,則______.14.如果一組數據x1,x2,…,xn的方差是4,則另一組數據x1+3,x2+3,…,xn+3的方差是_____.15.如圖,AB∥CD,∠B=68°,∠E=20°,則∠D的度數為.16.如圖,在平面直角坐標系xOy中,A是雙曲線y=1x在第一象限的分支上的一個動點,連接AO并延長與這個雙曲線的另一分支交于點B,以AB為底邊作等腰直角三角形ABC,使得點(1)點C與原點O的最短距離是________;(2)沒點C的坐標為((x,y)(x>0),點A在運動的過程中,y隨x的變化而變化,y關于x的函數關系式為________。17.當___________________時,關于的分式方程無解18.如圖,在平行四邊形ABCD中,點E、F分別在邊BC、AD上,請?zhí)砑右粋€條件__________使四邊形AECF是平行四邊形(只填一個即可).三、解答題(共66分)19.(10分)如圖,已知G、H是△ABC的邊AC的三等分點,GE∥BH,交AB于點E,HF∥BG交BC于點F,延長EG、FH交于點D,連接AD、DC,設AC和BD交于點O,求證:四邊形ABCD是平行四邊形.20.(6分)已知:如圖在平行四邊形ABCD中,過對角線BD的中點O作直線EF分別交DA的延長線、AB、DC、BC的延長線于點E、M、N、F.(1)觀察圖形并找出一對全等三角形:△_≌△_,請加以證明;(2)在(1)中你所找出的一對全等三角形,其中一個三角形可由另一個三角形經過怎樣的變換得到?21.(6分)某游泳館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費.②銀卡售價150元/張,每次憑卡另收10元.暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數.設游泳x次時,所需總費用為y元.(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數關系式;(2)在同一坐標系中,若三種消費方式對應的函數圖象如圖所示,請求出點A、B、C的坐標;(3)請根據函數圖象,直接寫出選擇哪種消費方式更合算.22.(8分)安德利水果超市購進一批時令水果,20天銷售完畢,超市將本次銷售情況進行了跟蹤記錄,根據所記錄的數據可繪制如圖所示的函數圖象,其中日銷售量(千克)與銷售時間(天)之間的函數關系如圖甲所示,銷售單價(元/千克)與銷售時間(天)之間的函數關系如圖乙所示。(1)直接寫出與之間的函數關系式;(2)分別求出第10天和第15天的銷售金額。(3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?23.(8分)如圖,在平面直角坐標系中,直線l1:y=﹣x+2向下平移1個單位后,得到直線l2,l2交x軸于點A,點P是直線l1上一動點,過點P作PQ∥y軸交l2于點Q(1)求出點A的坐標;(2)連接AP,當△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標;(3)點B為OA的中點,連接OQ、BQ,若點P在y軸的左側,M為直線y=﹣1上一動點,當△PQM與△BOQ全等時,求點M的坐標.24.(8分)某廠制作甲、乙兩種環(huán)保包裝盒.已知同樣用6m的材料制成甲盒的個數比制成乙盒的個數少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料.(1)求制作每個甲盒、乙盒各用多少材料?(2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數量不少于乙盒數量的2倍,那么請寫出所需材料總長度與甲盒數量之間的函數關系式,并求出最少需要多少米材料.25.(10分)如圖,正方形網格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(﹣4,1),B(﹣1,1),C(﹣2,3).(1)將△ABC向右平移1個單位長度,再向下平移3個單位長度后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O順時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;(3)直接寫出以C1、B1、B2為頂點的三角形的形狀是.26.(10分)端午節(jié)前夕,小東媽媽準備購買若干個粽子和咸鴨蛋(每個棕子的價格相同,每個咸鴨蛋的價格相同).已知某超市粽子的價格比咸鴨蛋的價格貴1.8元,小東媽媽發(fā)現,花30元購買粽子的個數與花12元購買的咸鴨蛋個數相同.(1)求該超市粽子與咸鴨蛋的價格各是多少元?(2)小東媽媽計劃購買粽子與咸鴨蛋共18個,她的一張購物卡上還有余額40元,若只用這張購物卡,她最多能購買粽子多少個?

參考答案一、選擇題(每小題3分,共30分)1、D【解析】

根據菱形的對角線性質,即可得出答案.【詳解】解:∵菱形的對角線互相垂直平分,且每一條對角線平分一組對角,

∴菱形的對角線不一定具有的性質是相等;

故選:D.【點睛】此題主要考查了菱形的對角線性質,熟記菱形的對角線互相垂直平分,且每一條對角線平分一組對角是解題的關鍵.2、B【解析】

由角平分線的定義和平行四邊形的性質可求得∠ABE=∠AEB,易得AB=AE.【詳解】解:∵四邊形ABCD為平行四邊形,∴AB=CD=3,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,故選:B.【點睛】本題主要考查平行四邊形的性質,利用平行線的性質和角平分線的定義求得∠ABE=∠AEB是解題的關鍵.3、C【解析】根據概念,知A、B、D既是軸對稱圖形,也是中心對稱圖形;C、既不是軸對稱圖形,也不是中心對稱圖形.故選C.4、B【解析】

根據方程的根的定義,把x=a代入方程求出a2-3a的值,然后整體代入代數式進行計算即可得解.【詳解】解:∵a是方程x2-3x-1=0的一個根,∴a2-3a-1=0,整理得,a2-3a=1,∴2a2-6a+3=2(a2-3a)+3=2×1+3=5,故選:B.【點睛】本題考查了一元二次方程的解,利用整體思想求出a2-3a的值,然后整體代入是解題的關鍵.5、B【解析】

根據函數的概念可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應關系,據此即可得出答案.【詳解】解:A、當x<0時,對于x的每一個值,y=-x都有唯一確定的值,所以y=-x(x<B、當x>0時,對于x的每一個值,y=±x有兩個互為相反數的值,而不是唯一確定的值,所以y=±x(x>0)不是函數;C、當x>0時,對于x的每一個值,y=x都有唯一確定的值,所以y=-x(x>0D、當x>0時,對于x的每一個值,y=-x都有唯一確定的值,所以y=--x(x>0故選B.【點睛】此題主要考查了函數的概念.函數的概念:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應,則y是x的函數,x叫自變量.6、A【解析】

首先證明△AOE≌△COF(ASA),可得AE=CF,再根據一組對邊平行且相等的四邊形是平行四邊形可判定判定四邊形AECF是平行四邊形,再由AC⊥EF,可根據對角線互相垂直的四邊形是菱形判定出AECF是菱形;四邊形ABCD是平行四邊形,可根據角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.【詳解】甲的作法正確;∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分線,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四邊形AECF是平行四邊形,∵EF⊥AC,∴四邊形AECF是菱形;乙的作法正確;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四邊形ABEF是平行四邊形,∵AB=AF,∴平行四邊形ABEF是菱形;故選:A.【點睛】此題主要考查了菱形形的判定,關鍵是掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形(平行四邊形+一組鄰邊相等=菱形);②四條邊都相等的四邊形是菱形.③對角線互相垂直的平行四邊形是菱形(或“對角線互相垂直平分的四邊形是菱形”).7、D【解析】

先求出兩小邊的平方和,再求出大邊的平方,看看是否相等即可.【詳解】解:A、12+22≠32,所以以1、2、3為邊不能組成直角三角形,故本選項不符合題意;B、32+52≠72,所以以3、5、7為邊不能組成直角三角形,故本選項不符合題意;C、(32)2+(42)2≠(52)2,所以以32、42、52為邊不能組成直角三角形,故本選項不符合題意;D、52+122=132,所以以5、12、13為邊能組成直角三角形,故本選項符合題意;故選:D.【點睛】本題考查了勾股定理的逆定理,能熟記勾股定理的逆定理的內容是解此題的關鍵.8、C【解析】

先把拋物線化為頂點式,再根據函數圖象平移的法則進行解答即可.【詳解】∵拋物線可化為∴其頂點坐標為:(2,?1),∴若使其平移后的頂點為(?2,4)則先向左平移4個單位,再向上平移5個單位.故選C.【點睛】本題考查二次函數圖像,熟練掌握平移是性質是解題關鍵.9、D【解析】

結合表格根據眾數、平均數、中位數的概念即可求解.【詳解】該班人數為:,得25分的人數最多,眾數為25,第20和21名同學的成績的平均值為中位數,中位數為:,平均數為:.故錯誤的為D.故選:D.【點睛】本題考查了眾數、平均數、中位數的知識,掌握各知識點的概念是解答本題的關鍵.10、A【解析】

根據一次函數的性質對①②進行判斷;根據一次函數的幾何變換對③進行判斷.根據一次函數圖象上點的坐標特征對④進行判斷;【詳解】①k=?2,函數值隨自變量的增大而減小,正確;②k=?2,b=4,函數的圖象經過第一、二、四象限,不經過第三象限,正確;③函數的圖象向下平移4個單位長度得y=?2x的圖象,正確;④函數的圖象與y軸的交點坐標是(0,4),故錯誤;故選:A.【點睛】本題考查了一次函數的性質:當k>0,y隨x的增大而增大,函數從左到右上升;當k<0,y隨x的增大而減小,函數從左到右下降.也考查了一次函數圖象的幾何變換.二、填空題(每小題3分,共24分)11、5cm【解析】

只要得出OE是△ABC的中位線,從而求得OE的長.【詳解】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位線,∵四邊形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故答案為5cm.【點睛】本題考查了菱形的性質及三角形的中位線定理,屬于基礎題,關鍵是得出OE是△ABC的中位線,難度一般.12、3【解析】

先根據分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.【詳解】解去分母得2-(x-a)=7(x-5)把x=5代入得2-(5-a)=0,解得a=3故填:3.【點睛】此題主要考查分式方程的求解,解題的關鍵是熟知分式方程增根的定義.13、【解析】

根據勾股定理以及直角三角形斜邊上的中線性質即可求出答案.【詳解】∵∠ABC=90°,BC=4cm,AB=3cm,

∴由勾股定理可知:AC=5cm,

∵點D為AC的中點,

∴BD=AC=cm,

故答案為:【點睛】本題考查勾股定理,解題的關鍵是熟練運用勾股定理以及直角三角形斜邊上的中線的性質,本題屬于基礎題型.14、1【解析】試題分析:數據x1,x2,…,xn的平均數設為a,則數據x1+3,x2+3,…,xn+3的平均數為a+3,根據方差公式:S2=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.則數據x1+3,x2+3,…,xn+3的方差S′2={[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(xn+3)-(a+3)]2}=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.故答案為1.點睛:此題主要考查了方差公式的運用,關鍵是根據題意得到平均數的變化,再正確運用方差公式進行計算即可.15、48°【解析】試題分析:因為AB∥CD,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E,∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.考點:1.平行線的性質2.三角形的外角的性質16、2y=-1【解析】

(1)先根據反比例函數的對稱性及等腰直角三角形的性質可得OC=OA=OB,利用勾股定理求出AO的長為m2+1m2(2)先證明△AOD≌△COE可得AD=CE,OD=OE,然后根據點C的坐標表示出A的坐標,再由反比例函數的圖象與性質即可求出y與x的函數解析式.【詳解】解:(1)連接OC,過點A作AD⊥y軸,如圖,,

∵A是雙曲線y=1x在第一象限的分支上的一個動點,延長AO交另一分支于點B∴OA=OB,∵△ABC是等腰直角三角形,∴OC=OA=OB,∴當OA的長最短時,OC的長為點C與原點O的最短距離,設A(m,1m∴AD=m,OD=1m∴OA=AD2+OD2∵m-1∴當m-1m2=0∴點C與原點O的最短距離為2.故答案為2;(2)過點C作x軸的垂線,垂足為E,如上圖,∴∠ADO=∠CEO=90°,∵△ABC是等腰直角三角形,∴OC=OA=OB,OC⊥AB,∴∠COE+∠AOE=90°,∵∠AOD+∠AOE=90°,∴∠AOD=∠COE,∴△AOD≌△COE(AAS),∴AD=CE,OD=OE,∵點C的坐標為(x,y)(x>0),∴OE=x,CE=-y,∴OD=x,AD=-y,∴點A的坐標為(-y,x),∵A是雙曲線y=1∴x=1-y,即∴y關于x的函數關系式為y=-1x(x>0故答案為y=-1x(x>0【點睛】本題考查了反比例函數的綜合應用及等腰直角三角形的性質,全等三角形的判定與性質.利用配方法求出AO的長的最小值是解題的關鍵.17、m=1、m=-4或m=6.【解析】

方程兩邊都乘以(x+2)(x-2)把分式方程化為整式方程,當分式方程有增根或分式方程化成的整式方程無解時原分式方程無解,根據這兩種情形即可計算出m的值.【詳解】解:方程兩邊都乘以(x+2)(x-2)去分母得,

2(x+2)+mx=3(x-2),

整理得(1-m)x=10,∴當m=1時,此整式方程無解,所以原分式方程也無解.

又當原分式方程有增根時,分式方程也無解,∴當x=2或-2時原分式方程無解,

∴2(1-m)=10或-2(1-m)=10,

解得:m=-4或m=6,

∴當m=1、m=-4或m=6時,關于x的方程無解.【點睛】本題考查了分式方程的無解條件.分式方程無解有兩種情形:一是分式方程有增根;二是分式方程化成的整式方程無解.18、AF=CE(答案不唯一).【解析】

根據平行四邊形性質得出AD∥BC,得出AF∥CE,當AF=CE時,四邊形AECF是平行四邊形;根據有一組對邊相等且平行的四邊形是平行四邊形的判定,可添加AF=CE或FD=EB.根據兩組對邊分別平行的四邊形是平行四邊形的定義,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四邊形AECF是平行四邊形.三、解答題(共66分)19、證明見解析.【解析】分析:根據題意得出EG、FH分別是△ABH和△CBG的中位線,從而得出ED∥BH,FD∥BG,即四邊形BHDG是平行四邊形,從而得出OB=OD,OG=OH,結合AG=CH得出OA=OC,從而根據對角線互相平分的四邊形是平行四邊形得出答案.詳解:證明:∵G、H是AC的三等分點且GE∥BH,HF∥BG,∴AG=GH=HC,EG、FH分別是△ABH和△CBG的中位線,∴ED∥BH,FD∥BG,∴四邊形BHDG是平行四邊形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四邊形ABCD是平行四邊形.點睛:本題主要考查的是平行四邊形的性質與判定,屬于中等難度的題型.根據中位線的性質得出四邊形BHDG是平行四邊形是解決這個問題的關鍵.20、(1)△DOE≌△BOF;證明見解析;(2)繞點O旋轉180°后得到或以點O為中心作對稱變換得到.【解析】

(1)本題要證明如△ODE≌△BOF,已知四邊形ABCD是平行四邊形,具備了同位角、內錯角相等,又因為OD=OB,可根據AAS能判定△DOE≌△BOF;(2)平行四邊形是中心對稱圖形,這對全等三角形中的一個是以其中另一個三角形繞點O旋轉180°后得到或以點O為中心作對稱變換得到.【詳解】(1)△DOE≌△BOF;證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠EDO=∠FBO,∠E=∠F.又∵OD=OB,∴△DOE≌△BOF(AAS).(2)繞點O旋轉180°后得到或以點O為中心作對稱變換得到.考點:1.平行四邊形的性質;2.全等三角形的判定.21、(1)銀卡消費:y=10x+150,普通消費:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案見解析.【解析】試題分析:(1)根據銀卡售價150元/張,每次憑卡另收10元,以及旅游館普通票價20元/張,設游泳x次時,分別得出所需總費用為y元與x的關系式即可;(2)利用函數交點坐標求法分別得出即可;(3)利用(2)的點的坐標以及結合得出函數圖象得出答案.解:(1)由題意可得:銀卡消費:y=10x+150,普通消費:y=20x;(2)由題意可得:當10x+150=20x,解得:x=15,則y=300,故B(15,300),當y=10x+150,x=0時,y=150,故A(0,150),當y=10x+150=600,解得:x=45,則y=600,故C(45,600);(3)如圖所示:由A,B,C的坐標可得:當0<x<15時,普通消費更劃算;當x=15時,銀卡、普通票的總費用相同,均比金卡合算;當15<x<45時,銀卡消費更劃算;當x=45時,金卡、銀卡的總費用相同,均比普通票合算;當x>45時,金卡消費更劃算.【點評】此題主要考查了一次函數的應用,根據數形結合得出自變量的取值范圍得出是解題關鍵.22、(1);(2)200元,270元;(3)“最佳銷售期”共有5天,銷售單價最高為9.6元.【解析】

(1)分兩種情況進行討論:①0≤x≤15;②15<x≤20,針對每一種情況,都可以先設出函數的解析式,再將已知點的坐標代入,利用待定系數法求解;

(2)日銷售金額=日銷售單價×日銷售量.由于第10天和第15天在第10天和第20天之間,當10≤x≤20時,設銷售單價p(元/千克)與銷售時間x(天)之間的函數關系式為p=mx+n,由點(10,10),(20,8)在p=mx+n的圖象上,利用待定系數法求得p與x的函數解析式,繼而求得10天與第15天的銷售金額;

(3)日銷售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,則求出“最佳銷售期”共有5天;然后根據p=x+12(10≤x≤20),利用一次函數的性質,即可求出在此期間銷售時單價的最高值.【詳解】解:(1)分兩種情況:

①當0≤x≤15時,設日銷售量y與銷售時間x的函數解析式為y=k1x,

∵直線y=k1x過點(15,30),

∴15k1=30,解得k1=2,

∴y=2x(0≤x≤15);

②當15<x≤20時,設日銷售量y與銷售時間x的函數解析式為y=k2x+b,

∵點(15,30),(20,0)在y=k2x+b的圖象上,

∴,解得:,

∴y=-6x+120(15<x≤20);

綜上,可知y與x之間的函數關系式為:(2))∵第10天和第15天在第10天和第20天之間,

∴當10≤x≤20時,設銷售單價p(元/千克)與銷售時間x(天)之間的函數解析式為p=mx+n,

∵點(10,10),(20,8)在p=mx+n的圖象上,

∴,解得:,

∴(10≤x≤20),當時,銷售單價為10元,銷售金額為10×20=200(元);當時,銷售單價為9元,銷售金額為9×30=270(元);(3)若日銷售量不低于1千克,則,當時,,由得;當時,,由,得,∴,∴“最佳銷售期”共有16-12+1=5(天).∵,,∴隨的增大而減小,∴當時,取12時有最大值,此時,即銷售單價最高為9.6元.故答案為:(1);(2)200元,270元;(3)“最佳銷售期”共有5天,銷售單價最高為9.6元.【點睛】本題考查一次函數的應用,有一定難度.解題的關鍵是理解題意,利用待定系數法求得函數解析式,注意數形結合思想與函數思想的應用.23、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)【解析】

(1)求出直線l2的解析式為y=﹣x+1,即可求A的坐標;(2)設點P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P點坐標;(3)設P(n,﹣n+2),M(m,﹣1),則Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①當△PQM≌△BOQ時,PM=BQ,QM=OQ,結合勾股定理,求出m;②當△QPM≌△BOQ時,有PM=OQ,QM=BQ,結合勾股定理,求出m即可.【詳解】解:(1)∵直線l1:y=﹣x+2向下平移1個單位后,得到直線l2,∴直線l2的解析式為y=﹣x+1,∵l2交x軸于點A,∴A(2,0);(2)當△APQ為以PQ為底邊的等腰三角形時,∴AQ=AP,∵點P是直線l1上一動點,設點P(x,﹣x+2),∵過點P作PQ∥y軸交l2于點Q∴Q(x,﹣x+1),∴(﹣x+2)2=(﹣x+1)2,∴x=3,∴P(3,),Q(3,﹣);(3)∵點B為OA的中點,∴B(1,0),∴PQ=BO=1,設P(n,﹣n+2),M(m,﹣1),則Q(n,﹣n+1),∴BQ=,OQ=,PM=,QM=,①∵△PQM與△BOQ全等,①當△PQM≌△BOQ時,有PM=BQ,QM=OQ,=,=,∴n=2m﹣2,∵點P在y軸的左側,∴n<0,∴m<1,∴m=﹣1,∴M(﹣1,﹣1);②當△QPM≌△BOQ時,有PM=OQ,QM=BQ,=,=,∴n=﹣m,∵點P在y軸的左側,∴n<0,∴m>2,∴m=8,∴M(﹣1,8);綜上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1個單位后,得到直線l2,【點睛】本題考查一次函數的綜合;熟練掌握一次函數的圖象特點,等腰三角形與全等三角形的性質是解題的關鍵.24、甲盒用1.6米材料;制作每個乙盒用1.5米材料;l=1.1n+1511,17

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論