版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
曹懷東、朱熹平涉嫌抄襲被迫道歉Erratumto"ACompleteProofofthePoincaréandGeometrizationConjectures-ApplicationoftheHamilton-PerelmanTheoryoftheRicciFlow",AsianJ.Math.,Vol.10,No.2,165-492,2006
Huai-DongCaoandXi-PingZhu
WewouldliketothankBruceKleinerandJohnLottforbringingtoourattentionthefactthattheargumentconcerningClaim2intheproofofPerelman'ssingularitystructuretheorem(i.e.,theStep2intheproofofTheorem7.1.1inourpaper,p.400-402)essentiallyappearedintheinitialversionoftheirnotesonPerelman'sfirstpaperpostedonthewebsite/research/ricciflow/perelman.htmlinJune,2003.Thankstothisinitialversionoftheirnotes,thispartofPerelman'sargumenthadbeenwidelyunderstoodbytheexpertsinthefieldsinceJuneof2003.
Lookingback,werealizethat,sometimeduringtheperiodbetweenJune2003andearly2004,wehadlookedattheinitialversionofKleiner-Lott'snotes,andtheargumentforfinitedistanceimpliesfinitecurvatureinourownnotesbackthenwasbasedontheargumentintheirinitialnotes.Morethanayearlater,wewroteuptheStep2intheproofofTheorem7.1.1inourpaperaccordingtoourownnotesandoverlookedthefactthattheargumentwasinfactbasedontheworkofKleiner-Lottintheirinitialnotes.WeapologizeforfailingtoattributethisargumenttoKleinerandLottinourpaperduetoouroversight.
Intheintroductionwewrotethat"Wewouldliketopointoutthatourproofofthesingularitystructuretheorem(Theorem7.1.1)isdifferentfromthatofPerelmanintwoaspects:(1)weavoidusinghiscrucialestimateinClaim2in尊敬的庫珀先生:
丘成桐在《紐約客》的文章被以不公正的方式描寫讓我感到極大的不安。我在下面提供給你我關于此事的看法,以正視聽。我授權(quán)你在能夠?qū)η鹩兴鶐椭那闆r下將這封信與《紐約客》雜志和公眾分享。
20世紀80年代初,在我剛完成具有正瑞奇(Ricci)曲率的三維流形瑞奇流的第一篇論文時,丘立刻意識到了它的重要性。雖然我證明了一個他一直在用極小曲面從事研究的結(jié)果,他不僅沒有表現(xiàn)出任何嫉妒之意,而是成為我最有力的支持者。早在當時,他就向我指出瑞奇流可以形成瓶頸(neckpinch)奇點,這些奇點會解決連通和分解的問題,這樣就可以導致龐加萊猜想的一個證明。1985年,他把我、RickSchoen(注:現(xiàn)Stanford大學數(shù)學系教授)和GerhardHuisken(注:現(xiàn)德國馬克斯-普朗克引力物理研究所所長)一起帶到了加州大學圣地亞哥分校,我們四人形成了一個非常活躍且頗具成效的幾何分析研究小組。當時Huisken主攻超曲面的平均曲率流,這是一個幾乎和Ricci流平行的研究方向,也是對內(nèi)蘊和外蘊曲率來說最自然的幾何流。丘成桐反復鼓勵我們用一些類似于橢圓方程研究中發(fā)展出來的極小曲面方程中的技巧來研究這些拋物方程中奇異點的放大問題。在極小曲面方程方面,丘與Rick是該方面的專家。如果沒有丘成桐早期的指導和支持,就不會發(fā)展出整套的Ricci流綱領,Perelman最后完成的正是這一綱領。
丘還有一些跟隨他從普林斯頓到圣地亞哥分校的非常杰出的學生,特別是曹懷東,周培能和施皖雄三人。丘成桐鼓勵他們研究瑞奇流,他們對這個領域也作出了非常重要的貢獻。曹懷東證明了在正則Kaehler情形中歸一化瑞奇流總是具有存在性,并具有對零或負的陳類的收斂性。曹懷東的結(jié)果是佩雷爾曼在Kaehler瑞奇流研究中激動人心的工作的基礎,佩雷爾曼證明了瑞奇流對于正的陳類半徑與標度曲率是有界的。周培能除了在其他幾何流方面有很多杰出的工作之外,還把我在二維球上瑞奇流的工作推廣到了曲率可變號的情形。施皖雄開創(chuàng)了完整非緊流形上瑞奇流的研究,在許多漂亮的論證基礎上他證明了瑞奇流的局部微商估計。奇異點的放大通常會產(chǎn)生非緊致解,證明放大極限的收斂性總是要依賴于施皖雄的微商估計,所以施皖雄的工作是佩雷爾曼和我使用的所有極限論證方法的關鍵。
1982年,丘成桐和李偉光(PeterLi)寫了一篇超乎尋常重要的論文,文章給出了線性熱方程的逐點微分不等式,它在沿曲線積分后可以給出經(jīng)典的Harnack不等式。丘成桐反復地鼓勵我研究這篇論文,基于他們的方法,我得以證明瑞奇流和平均曲率流的Harnack不等式。這種由李-丘的工作所得到的Harnack不等式是對我開創(chuàng)的早先的解決方案進行分析的基礎。Perelman完成了這一分析,并且這正是他的正則鄰域定理中所用到的基本工具。曹懷東證明了Kaehler情形中瑞奇流的Harnack估計,而周培能則證明了Yamabe流和高斯曲率流的Harnack估計。
故事遠還沒有結(jié)束于此。佩雷爾曼最重要的工作是瑞奇流非坍塌性結(jié)果不僅僅在三維而且在任意維數(shù)中都有效。它對未來的意義超出了龐加萊猜想本身,這成為了排除雪茄型奇點的工具,而雪茄型奇點正是我未能解決的一種奇異點分類。這個結(jié)果有兩個證明,一個使用了逆向標量熱方程的熵,另一個使用了路徑積分。這里對熵的估計來自于對共軛熱方程的李-丘微分型Harnack不等式的積分,另一種估計是對同樣的Harnack不等式的最優(yōu)李-丘路徑積分。正如佩雷爾曼在他的第一篇論文7.4節(jié)中的所承認的,他寫道:?#19968;個更為相關的參考文獻是[L-Y],這里他們所用的一個與線性拋物方程相關的?#38271;度?#65292;這與我們的情形幾乎一模一樣?#12290;
多年來,丘成桐一致不懈地支持瑞奇流和整個幾何流領域的研究。這些研究還導致了其他重要的成就,比如最近Huisken和Ilmanen對Penrose猜想的證明,這是廣義相對論中非常重要的結(jié)果。我不認為除丘之外還有能夠?qū)ξ覀兊念I域給以如此之多的支持的卓越領袖。
丘建立的是一個天才的團隊,而不是權(quán)力的帝國。人們被他的活力、睿智和他對一流數(shù)學家堅定不移的支持所吸引,丘成桐將他們聚集在一起攻克最難的問題。在過去的許多年里,丘和我在瑞奇流和其他問題上一起度過了無數(shù)時間,常常是工作到深夜。從研究瓶頸奇點時開始,他就一貫無私地與我分享他的建議與意見,而從不要求得到任何個人榮譽。事實上,就在去年冬天,當我最后證明了一個我們一起研究多年的問題,即瑞奇流的Harnack不等式的局部情形,我提出應該將他的名字也寫進論文,他卻謙虛地謝絕了。不幸的事情是,現(xiàn)在他的人品被這樣不合事實地描寫出來。據(jù)我所知,他從來沒有提出過任何劃分榮譽的百分比的事情,也沒有說過佩雷爾曼應該和除我之外的任何其他人分享關于證明龐加萊猜想的榮譽。這當然是容易理解的,因為沒有人比佩雷爾曼更加慷慨地承認我的工作。所謂丘竊取佩雷爾曼成就的說法遠非事實,相反,丘一直稱贊佩雷爾曼的工作,并和我一起支持他獲得菲爾茨獎。事實上,沒有誰比丘更應該為瑞奇流綱領的創(chuàng)建負責,而佩雷爾曼正是用它獲得了這個(菲爾茨)獎。
您的忠誠的
理查德漢密爾頓
哥倫比亞大學數(shù)學教授龐加萊猜想的數(shù)學江湖那些價值百萬的問題幾年前,在美國波士頓的一個聚會上,劉克峰碰到了蘭頓·克雷(LandonClay)。當時還在哈佛大學數(shù)學系讀博士的劉克峰問了他一個問題:“為什么你會對數(shù)學如此情有獨鐘?”多年以后,浙大的永謙中心,已經(jīng)身為浙大數(shù)學中心執(zhí)行主任和加州大學洛杉磯分校數(shù)學教授的劉克峰回憶起當時情景,仍然對克雷那略帶狡黠的微笑和回答記憶猶新:“他說,每當他聽人討論起數(shù)學問題,就會聽到錢的聲音在丁當作響。”千禧年數(shù)學問題克雷是波士頓地區(qū)很有名的一個商人,畢業(yè)于哈佛大學英語系,做的是風險投資生意,上過《福布斯》富人榜。1998年,他以自己和夫人拉維尼婭·克雷的名義,在哈佛大學所在地坎布里奇投資創(chuàng)辦了克雷數(shù)學研究所(ClayMathematicsInstitute)。2000年5月24日,在法國巴黎法蘭西學院舉辦的一次學術會議上,還不甚為人所知的克雷數(shù)學研究所給自己打了一個“漂亮的廣告”——丘成桐語。作為對100年前希爾伯特23個數(shù)學問題的響應,克雷數(shù)學研究所董事會宣布,設立700萬美元的大獎,征集對7個著名數(shù)學難題的解決方案。同各自艱深且難以用短短幾句話介紹清楚的數(shù)學猜想和方程相比,“千禧年數(shù)學問題”(MillenniumPrizeProblems)這個概念無疑對公眾更具親和力,而每個問題100萬美元的懸賞,又成了“書中自有黃金屋”的最佳注腳。結(jié)果可想而知:在Google上搜索“MillenniumPrizeProblems”,得到的結(jié)果有187萬條,繼續(xù)搜索其中之一的龐加萊猜想“Poincareconjecture”,僅有39.7萬條。而這,還要拜近幾年中龐加萊猜想有望解決而引起的公眾關注所賜。7個千禧年數(shù)學問題,分別是1971年斯蒂芬·庫克(StephenCook)和萊昂納德·萊維(LeonidLevin)各自獨立提出的“P與NP問題”,19世紀德國數(shù)學家黎曼(G.Riemann)提出的“黎曼假設”,1904年法國數(shù)學家亨利·龐加萊提出的“龐加萊猜想”,英國數(shù)學家威廉·霍奇(WilliamHodge)在上世紀30年代提出的“霍奇猜想”,60年代彼得·斯溫納頓·戴爾和布賴恩·伯斯提出的伯斯-斯溫納頓·戴爾猜想,物理學家克勞德-路易斯·尼維亞和喬治·斯托克斯提出的一系列關于流體力學問題的尼維亞-斯托克斯方程組,以及源自楊振寧和羅伯特·米爾斯關于量子場問題的楊-米爾斯理論。懸賞解題的淵源屬于精神領域的數(shù)學問題,與物質(zhì)世界里的財富發(fā)生聯(lián)系,這其實并不新鮮。傳說中,當畢達哥拉斯證明了直角三角形的勾股定理時,他和他的門徒曾經(jīng)為此宰殺了100頭牛向繆斯女神獻祭。而在文藝復興時期,數(shù)學家們便熱衷于就數(shù)學問題展開解題挑戰(zhàn)賽,一方給另一方提出一系列的數(shù)學問題,贏得挑戰(zhàn)的人不僅能夠獲得聲望,很多時候還能得到彩頭。最有名的一個故事是關于三次方程式求解的。憑借掌握了三次方程求解方法而名利雙收的馬里亞·菲奧爾(MariaFior)在1535年2月12日舉行的挑戰(zhàn)賽中遇上了口吃的數(shù)學家尼克羅·馮坦納(NiccoloFontana),結(jié)果,后者解出了菲奧爾給出的全部問題,菲奧爾卻沒能解出馮坦納的任何一個問題。故事的結(jié)局,以菲奧爾聲名掃地并失去教職而告終。這種與武俠小說中打擂臺異曲同工的挑戰(zhàn)賽,為幾百年來全世界數(shù)學界一條不成文的規(guī)則埋下了伏筆:誰能解開那些別人都解不開的最難的問題,誰就可以成為武林盟主。時間過渡到近代,懸賞解題的故事開始變得層出不窮。出于軍事和政治——主要是對海上控制權(quán)的爭奪——的需要,從18世紀開始,以英國海軍部和法國巴黎科學院為代表的國家研究機構(gòu)設立了一系列獎金。1735年,歐拉用了3天3夜的時間,解決了關于月球位置計算求解的懸賞問題。他因此得到了300英鎊的獎金。這在當時是一筆相當大的收入,但歐拉付出的代價似乎遠超于此:他的右眼因此而失明。在歐拉的一生中,曾12次贏得巴黎科學院的年度懸賞問題。關于費馬大定理的故事,也許最能體現(xiàn)數(shù)學難題與重金懸賞間微妙而有趣的關系。19世紀40年代末,法國科學院為能夠最終解開費馬大定理的數(shù)學家設立了一枚金質(zhì)獎章和3000法郎的獎金。此后,1908年,因費馬大定理而改變了自殺念頭的德國富翁保羅·沃爾夫斯凱爾(PaulWolfskehl)臨終前設立遺囑,費馬大定理的證明者可以獲得10萬馬克的獎金。雖然這筆錢因為歐戰(zhàn)后貨幣貶值而最終幾乎不足以買一杯咖啡,但它引發(fā)的公眾對費馬大定理的熱情卻持續(xù)了幾十年。這個問題的最終解決者,安德魯·懷爾斯,之所以會對它發(fā)生興趣,源頭便是10歲時看到的數(shù)學史家貝爾(E.Bell)寫給普通大眾的關于費馬大定理的一本科普著作《最終問題》(TheLastProblem)。百萬于我如浮云盡管百萬美元成為公眾和媒體津津樂道的話題,但有趣的是,在數(shù)學家中,一致的看法卻與很多媒體的猜測大相徑庭。英國巴斯大學的應用數(shù)學教授克里斯·巴德(ChrisBudd)寫過一篇介紹千禧年數(shù)學問題的文章《數(shù)學怎樣讓你名利兼收》(HowMathsCanMakeYouRichandFamous)。他最后得出的結(jié)論是,要通過解答這7道數(shù)學問題而成為百萬富翁或是閃光燈追逐的焦點,不如當個電影明星,甚至是搶銀行,都會更容易些。相反,這些問題真正的誘惑,是“打開一扇通往無盡樂趣與可能的職業(yè)生涯的大門”。數(shù)學界流傳著一種說法:好的工作分為兩種,一種可以給很多數(shù)學家提供飯碗,另一種則會打破很多數(shù)學家的飯碗。后者指的是對一個領域的蓋棺定論的決定性研究工作,前者,則是像龐加萊猜想這樣,由此生出一個全新的研究方向,誕生多個菲爾茨獎的大問題。“如果拿出100萬美元就可以讓自己解決如此重要的問題,相信讓很多數(shù)學家自掏腰包,他們也會心甘情愿,毫不猶豫?!泵慨敱蛔穯柶鹫l將得到為龐加萊猜想而設立的100萬美元獎金以及如何分配的問題,從不諱言自己早就是一名百萬富翁的丘成桐總是揮揮手,報之以滿不在乎的表情:“7個千禧年數(shù)學問題,最關鍵的是,它們都是好的數(shù)學問題。它們的價值,絕不是700萬美元所能衡量。甚至7000萬,7億,也不足以形容它們對數(shù)學界和我們生活的這個世界的重要意義。”“這真是數(shù)學史上的偉大時刻”——獨家專訪克雷數(shù)學研究所所長詹姆斯·卡爾森2003年4月24日,當成立僅4年的克雷數(shù)學研究所宣布,選中猶他大學的詹姆斯·卡爾森(JamesCarlson)出任新一任所長時,參與做出這一決定的安德魯·懷爾斯曾說過,卡爾森“將會成為一名卓越的數(shù)學大使”。隨著龐加萊猜想的被解決和由此引發(fā)的整個世界對克雷數(shù)學研究所千年數(shù)學問題的極大關注,卡爾森幾乎是完美地完成了自己的使命。“并不是每一個數(shù)學家一生中都有機會目睹自己所研究領域中如此激動人心的進展?!鼻鸪赏┰?jīng)用這句話開始自己的演講。對于身兼幾何分析與拓撲學家和克雷數(shù)學研究所所長兩個身份的卡爾森來說,他的喜悅,或者是滿足,也許亦是雙重的。三聯(lián)生活周刊:在您看來,克雷先生為什么要設立一個數(shù)學研究所?詹姆斯·卡爾森:克雷相信,科學和數(shù)學是人類進步的基礎。這些領域理當?shù)玫街С?,而這實際上是對我們未來的一種投資??死渍J為,同數(shù)學對人類智力和社會的貢獻相比,對它的支持顯然是非常不足的。如此,一個數(shù)學研究所就非常有意義。三聯(lián)生活周刊:是誰選中了龐加萊猜想作為七大千年數(shù)學問題之一?其他的問題又是誰選出的?詹姆斯·卡爾森:七大千年數(shù)學問題都是由克雷數(shù)學研究所創(chuàng)辦時的科學顧問委員會選中的,他們是阿蘭·孔(AlainConnes,法國數(shù)學家,1982年菲爾茨獎得主)、阿瑟·杰夫(ArthurJaffe,美國數(shù)學家和物理學家,克雷數(shù)學研究所前所長,美國數(shù)學會主席)、安德魯·懷爾斯(AndrewWiles,美國數(shù)學家,1995年沃爾夫獎得主)、愛德華·威滕(EdwardWitten,美國數(shù)學家和物理學家,1985年物理學最高獎項阿爾伯特·愛因斯坦獎得主,1990年菲爾茨獎得主)。此外,他們還征詢了全世界其他一流數(shù)學家的意見。三聯(lián)生活周刊:您認為龐加萊猜想現(xiàn)在是否已經(jīng)完全被證明了?詹姆斯·卡爾森:(現(xiàn)在的情形)看起來是非常、非??煽康?。不過,整個數(shù)學共同體對三項與之有關工作的仔細研究仍然是關鍵的檢驗。這些工作包括朱熹平和曹懷東的、克萊納和洛特的以及摩根和田剛的。三項工作的發(fā)表標志著自1904年龐加萊提出問題后整個故事向前推進的重要一步。當然,其他人也對這個故事有所貢獻,最重要的兩個主角就是理查德·漢密爾頓和格利高里·佩雷爾曼。漢密爾頓在1982年的論文中就以深刻的洞察力給出了Ricci流的公式,這篇論文已經(jīng)明確了Ricci流與龐加萊猜想的關系,并打開了一條通向這個猜想以及幾何化猜想的道路。漢密爾頓是這個領域的領袖,做出了一系列關鍵的貢獻。而佩雷爾曼則引入了新想法和一種極其重要的技巧,從而使?jié)h密爾頓的整個項目最終開花結(jié)果。佩雷爾曼的工作不僅解決了古老的非常困難的問題,而且還開辟了新視野。這真是數(shù)學上的偉大時刻!三聯(lián)生活周刊:那么克雷數(shù)學研究所打算什么時候頒出100萬美元的獎金呢?這筆獎金將如何在與龐加萊猜想有關的數(shù)學家中分配?詹姆斯·卡爾森:我們會在未來兩年時間中考慮這個問題。我們需要考量的因素包括正確性和完整性兩方面。只有在解決了這個問題后,才會考慮到歸功于誰或是如何分配——也許不用分——獎金的問題。現(xiàn)在來討論這個問題,時間還不夠成熟,而且有些投機取巧。三聯(lián)生活周刊:這是克雷數(shù)學研究所第一次頒發(fā)千年數(shù)學問題的獎金,它將遵循怎樣的程序呢?詹姆斯·卡爾森:首先,在論文發(fā)表后,必須有一個兩年的等待期。按照正式章程規(guī)定,論文應當發(fā)表在有國際聲譽的數(shù)學專業(yè)雜志上,或者是其他科學顧問委員會認可的形式。如果屆時數(shù)學共同體已經(jīng)達成一致,認為證明是正確的,克雷數(shù)學研究所會指定一個委員會專門考慮這個問題。這個委員會必須包括至少一名科學顧問委員會的成員,以及至少兩名其他成員——他們應當是這一領域的專家。組成的專門委員會應當在合理的時間內(nèi)向科學顧問委員會提交報告,根據(jù)這份報告以及其他調(diào)查結(jié)果,科學顧問委員會再將自己的推薦結(jié)果呈交給董事會,由其做出最后決定??茖W顧問委員會推薦的獎金獲得者可以是一個人,也可以分成幾部分,頒發(fā)給問題的多個解決者或是他們的后人。在確定獎金的分配時,發(fā)表時間前后的因素會給予考慮。三聯(lián)生活周刊:您怎么看待中國數(shù)學家在解決龐加萊猜想中的貢獻?詹姆斯·卡爾森:中國數(shù)學家已經(jīng)做出了很多重要的數(shù)學貢獻,他們的工作得到了廣泛的承認和尊重。中國人天才輩出,文化傳統(tǒng)中便極為重視科學和學術成就,而且大學和政府在鼓勵學術領先上又做出了許多明智的投資,擁有這些條件,在未來幾年中,我們還可以期待更多的成果。三聯(lián)生活周刊:愿意預測一下七大數(shù)學問題中接下來會是哪一個被解決嗎?詹姆斯·卡爾森:這就像預測地震一樣,我們知道它一定會發(fā)生,但我們不能確定究竟是什么時候。不過,我們可以預測,由此引發(fā)的結(jié)果,盡管不知道會是什么樣的結(jié)果,但一定是極其偉大的。求解法蘭西數(shù)學奇跡笛卡兒,費馬,帕斯卡,拉格朗日,拉普拉斯,蒙日,傅立葉,柯西,伽羅瓦,龐加萊……所有這些數(shù)學史上仰之彌高的天才,有一個共同點,他們都是法國人。如果說這些輝煌的名字都屬于昔日的話,即使在隨著學科的細化、通才和天才已經(jīng)漸漸消隱于公眾視野的20世紀20年代之后,法國在數(shù)學上的突出成就,依然有目共睹。設立于1936年的數(shù)學界最高獎項菲爾茨獎,迄今為止,一共頒給了45名數(shù)學家。其中,施瓦茨(LaurentSchwartz),塞爾(Jean-PierreSerre),托姆(ReneThom),格羅滕迪克(AlexanderGrothemdieck),阿蘭·孔(AlainConnes),利翁(PierreLouisLions),約科(JeanChristopheYoccoz),拉佛閣(LaurentLafforgue),8名得主,全都是法國人。對于一個只有6000萬人口,民族天性略帶散漫的國家來說,在講求精確和嚴謹?shù)臄?shù)學舞臺上如此一貫的精彩演出,不能說不是個奇跡。1819年,愛爾蘭醫(yī)生薩繆爾·布萊克(SamuelBlack)發(fā)現(xiàn)了一個奇怪現(xiàn)象:盡管法國人的日常飲食中攝入的飽和脂肪含量極高,但心血管疾病的發(fā)病率卻相當?shù)?。由此,誕生了“法蘭西奇跡”(FrenchParadox)這個名詞。醫(yī)學上的法蘭西奇跡,最后歸因于葡萄酒。數(shù)學上的法蘭西奇跡,原因又是什么呢?清華大學數(shù)學系主任、法國南巴黎大學(巴黎第十一大學)數(shù)學博士文志英,給出的答案是:好的傳統(tǒng)與好的體制。有趣的是,在數(shù)學傳統(tǒng)悠久的法國,按照中國的一些標準來看,數(shù)學家的生活,并不算滋潤。首先,是教職的獲取。盡管法國以數(shù)學教學職位多而著稱,一個學校的數(shù)學系和數(shù)學研究所往往可以有200多個老師
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宜興電工證考試題庫及答案
- 20263M(中國)校招面試題及答案
- 傳感器劉換成試題及答案
- 未來五年傳輸線-天線分析儀企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 三臺縣2025年縣級事業(yè)單位面向縣內(nèi)鄉(xiāng)鎮(zhèn)公開選調(diào)工作人員(16人)備考題庫必考題
- 北京中國石油大學教育基金會招聘2人參考題庫附答案
- 南昌市建設投資集團有限公司公開招聘【20人】參考題庫必考題
- 山東高速集團有限公司2025年下半年社會招聘(162人) 備考題庫必考題
- 招23人!高中可報、2025年茫崖市公安局面向社會公開招聘警務輔助人員備考題庫附答案
- 鹽亭縣2025年教體系統(tǒng)面向縣外公開考調(diào)事業(yè)單位工作人員的考試備考題庫附答案
- 紹興金牡印染有限公司年產(chǎn)12500噸針織布、6800萬米梭織布高檔印染面料升級技改項目環(huán)境影響報告
- 成人呼吸支持治療器械相關壓力性損傷的預防
- DHA乳狀液制備工藝優(yōu)化及氧化穩(wěn)定性的研究
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 三星-SHS-P718-指紋鎖使用說明書
- 岳麓書社版高中歷史必修三3.13《挑戰(zhàn)教皇的權(quán)威》課件(共28張PPT)
- GC/T 1201-2022國家物資儲備通用術語
- 污水管網(wǎng)監(jiān)理規(guī)劃
- GB/T 6730.65-2009鐵礦石全鐵含量的測定三氯化鈦還原重鉻酸鉀滴定法(常規(guī)方法)
- GB/T 35273-2020信息安全技術個人信息安全規(guī)范
- 《看圖猜成語》課件
評論
0/150
提交評論