版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024學(xué)年安徽省干汊河中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“?x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤52.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為8的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.3.已知經(jīng)過兩點(diǎn)(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.74.已知、,則直線的傾斜角為()A. B.C. D.5.在平面上有一系列點(diǎn),對(duì)每個(gè)正整數(shù),點(diǎn)位于函數(shù)的圖象上,以點(diǎn)為圓心的與軸都相切,且與彼此外切.若,且,,的前項(xiàng)之和為,則()A. B.C. D.6.已知拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.7.已知空間四邊形,其對(duì)角線、,、分別是邊、的中點(diǎn),點(diǎn)在線段上,且使,用向量,表示向量是A. B.C. D.8.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)為()A. B.C. D.9.在等比數(shù)列{}中,,,則=()A.9 B.12C.±9 D.±1210.將點(diǎn)的極坐標(biāo)化成直角坐標(biāo)是(
)A. B.C. D.11.拋物線的準(zhǔn)線方程為()A B.C. D.12.已知等差數(shù)列,,,則數(shù)列的前項(xiàng)和為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)到準(zhǔn)線的距離是______.14.已知斜率為1的直線經(jīng)過橢圓的左焦點(diǎn),且與橢圓交于,兩點(diǎn),若橢圓上存在點(diǎn),使得的重心恰好是坐標(biāo)原點(diǎn),則橢圓的離心率______.15.直線與直線垂直,則______16.若,滿足約束條件,則的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角標(biāo)系中,已知n個(gè)圓與x軸和線均相切,且任意相鄰的兩個(gè)圓外切,其中圓.(1)求數(shù)列通項(xiàng)公式;(2)記n個(gè)圓的面積之和為S,求證:.18.(12分)已知向量,(1)求;(2)求;(3)若(),求的值19.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項(xiàng)和;(2)若以數(shù)列中的相鄰兩項(xiàng),構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同20.(12分)在所有棱長(zhǎng)均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.21.(12分)已知等比數(shù)列的前項(xiàng)和為,,.?dāng)?shù)列的前項(xiàng)和為,且,(1)分別求數(shù)列和的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由22.(10分)求下列不等式的解集:(1);(2)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項(xiàng)不難得出答案【題目詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個(gè)充分不必要條件即為集合的真子集,由選擇項(xiàng)可知C符合題意.故選:C2、A【解題分析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【題目詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為8的正方形,,∴,,,因?yàn)?且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:A.3、C【解題分析】根據(jù)斜率的公式直接求解即可.【題目詳解】由題可知,,解得.故選:C【題目點(diǎn)撥】本題主要考查了兩點(diǎn)間斜率的計(jì)算公式,屬于基礎(chǔ)題.4、B【解題分析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【題目詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.5、C【解題分析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項(xiàng)公式,得出,最后利用裂項(xiàng)相消,求出數(shù)列前項(xiàng)和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.6、B【解題分析】根據(jù)拋物線和寫出焦點(diǎn)坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【題目詳解】拋物線的焦點(diǎn)為,雙曲線的,,所以,所以雙曲線的右焦點(diǎn)為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.7、C【解題分析】根據(jù)所給的圖形和一組基底,從起點(diǎn)出發(fā),把不是基底中的向量,用是基底的向量來(lái)表示,就可以得到結(jié)論【題目詳解】解:故選:【題目點(diǎn)撥】本題考查向量的基本定理及其意義,解題時(shí)注意方法,即從要表示的向量的起點(diǎn)出發(fā),沿著空間圖形的棱走到終點(diǎn),若出現(xiàn)不是基底中的向量的情況,再重復(fù)這個(gè)過程,屬于基礎(chǔ)題8、D【解題分析】由復(fù)數(shù)除法求得后可得其共軛復(fù)數(shù)【題目詳解】由題意,∴故選:D9、D【解題分析】根據(jù)題意,設(shè)等比數(shù)列的公比為,由等比數(shù)列的性質(zhì)求出,再求出【題目詳解】根據(jù)題意,設(shè)等比數(shù)列的公比為,若,,則,變形可得,則,故選:10、A【解題分析】本題考查極坐標(biāo)與直角坐標(biāo)互化由點(diǎn)M的極坐標(biāo),知極坐標(biāo)與直角坐標(biāo)的關(guān)系為,所以的直角坐標(biāo)為即故正確答案為A11、D【解題分析】根據(jù)拋物線方程求出,進(jìn)而可得焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程.【題目詳解】由可得,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為:,故選:D.12、A【解題分析】求出通項(xiàng),利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.【題目詳解】因?yàn)榈炔顢?shù)列,,,所以,所以,所以數(shù)列的前項(xiàng)和為故B,C,D錯(cuò)誤.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解題分析】由y2=2px=8x知p=4,又焦點(diǎn)到準(zhǔn)線的距離就是p,所以焦點(diǎn)到準(zhǔn)線的距離為4.14、【解題分析】設(shè)點(diǎn),,坐標(biāo)分別為,則根據(jù)題意有,分別將點(diǎn),,的坐標(biāo)代入橢圓方程得,然后聯(lián)立直線與橢圓方程,利用韋達(dá)定理得到和的值,代入得到關(guān)于的齊次式,然后解出離心率.【題目詳解】設(shè),,坐標(biāo)分別為,因?yàn)榈闹匦那『檬亲鴺?biāo)原點(diǎn),則,則,代入橢圓方程可得,其中,所以……①因?yàn)橹本€的斜率為,且過左焦點(diǎn),則的方程為:,聯(lián)立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【題目點(diǎn)撥】本題考查橢圓的離心率求解問題,難度較大.解答時(shí),注意,,三點(diǎn)坐標(biāo)之間的關(guān)系,注意韋達(dá)定理在解題中的運(yùn)用.15、##【解題分析】根據(jù)兩直線垂直得,即可求出答案.【題目詳解】由直線與直線垂直得,.故答案為:.16、【解題分析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【題目詳解】約束條件的可行域,如圖所示:目標(biāo)函數(shù)在點(diǎn)取得最小值,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)證明見解析.【解題分析】(1)由已知得,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計(jì)算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在中,所以即化簡(jiǎn)得,變形得,所以是以為首項(xiàng),為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.18、(1)(2)(3)【解題分析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標(biāo)表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運(yùn)算律即可得解.【小問1詳解】解:;【小問2詳解】解:;【小問3詳解】解:因?yàn)椋?,即,解?19、(1);(2)證明過程見解析.【解題分析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)、等比數(shù)列和等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可;(2)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合雙曲線漸近線方程和離心率公式進(jìn)行證明即可.【小問1詳解】設(shè)等比數(shù)列的公比為,因?yàn)椋?,因此,所以,所以;【小?詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.20、(1)證明見解析;(2)證明見解析.【解題分析】(1)通過計(jì)算·=0來(lái)證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來(lái)證得A1C⊥平面AB1C1.【題目詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因?yàn)椤?(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.21、(1),;(2)不存在,理由見解析.【解題分析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項(xiàng)和公比表示,得到一個(gè)方程組,求解即可得到首項(xiàng)和公比,結(jié)合等比數(shù)列的通項(xiàng)公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求出,再結(jié)合數(shù)列的第項(xiàng)與前項(xiàng)和之間的關(guān)系進(jìn)行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達(dá)式,然后利用裂項(xiàng)相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項(xiàng)、等差中項(xiàng)以及進(jìn)行化簡(jiǎn)變形,得到假設(shè)不成立,故可得到答案【題目詳解】(1)因?yàn)閿?shù)列為等比數(shù)列,設(shè)首項(xiàng)為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因?yàn)椋?,所以,所以,由,可得,所以?shù)列為等差數(shù)列,首項(xiàng)為,公差為1,故,則,當(dāng)時(shí),,當(dāng)時(shí),也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因?yàn)?,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【題目
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(環(huán)境監(jiān)測(cè)技術(shù))污染控制操作試題及答案
- 2026年市場(chǎng)營(yíng)銷綜合(多渠道營(yíng)銷)試題及答案
- 2025年高職水利水電建筑工程(水利水電工程)試題及答案
- 2025年高職(鐵道工程技術(shù))鐵路施工綜合測(cè)試題及答案
- 2025年高職游戲設(shè)計(jì)(游戲教學(xué)設(shè)計(jì))試題及答案
- 運(yùn)輸管理制度匯編
- 連鎖快捷酒店直營(yíng)店店長(zhǎng)管理手冊(cè)上模板
- 養(yǎng)老院老人精神關(guān)懷制度
- 養(yǎng)老院老人檔案管理制度
- 養(yǎng)老院消防安全制度
- 神經(jīng)外科規(guī)范化培訓(xùn)體系綱要
- 互助與團(tuán)隊(duì)精神主題班會(huì)課件
- 制造企業(yè)發(fā)票管理辦法
- 中醫(yī)情志護(hù)理的原則和方法
- 護(hù)士情緒管理課件總結(jié)
- DBJ50-T-200-2024 建筑樁基礎(chǔ)技術(shù)標(biāo)準(zhǔn)
- 新人教版小學(xué)數(shù)學(xué)教材解讀
- 設(shè)備、管道、鋼結(jié)構(gòu)施工方案
- 2021-2026年中國(guó)沉香木行業(yè)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 2024-2030年中國(guó)海南省廢水污染物處理資金申請(qǐng)報(bào)告
- 新能源汽車技術(shù) SL03維修手冊(cè)(第4章)-電氣-4.2.2~4.2.12電器集成
評(píng)論
0/150
提交評(píng)論