2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆全國(guó)18名校大聯(lián)考數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A. B.1 C.-1 D.02.已知集合,則()A. B.C. D.3.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項(xiàng)和,則()A. B. C. D.4.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.85.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.6.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種7.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-18.已知,則()A.2 B. C. D.39.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.10.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.011.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長(zhǎng)的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.12.已知平面向量,滿足,,且,則()A.3 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.14.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國(guó)”的答題活動(dòng),要從4道題中隨機(jī)抽取2道作答,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的概率為_(kāi)____.15.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎(jiǎng).在比賽結(jié)果揭曉之前,四人的猜測(cè)如下表,其中“√”表示猜測(cè)某人獲獎(jiǎng),“×”表示猜測(cè)某人未獲獎(jiǎng),而“○”則表示對(duì)某人是否獲獎(jiǎng)未發(fā)表意見(jiàn).已知四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的,那么兩名獲獎(jiǎng)?wù)呤莀______.甲獲獎(jiǎng)乙獲獎(jiǎng)丙獲獎(jiǎng)丁獲獎(jiǎng)甲的猜測(cè)√××√乙的猜測(cè)×○○√丙的猜測(cè)×√×√丁的猜測(cè)○○√×16.已知數(shù)列滿足:點(diǎn)在直線上,若使、、構(gòu)成等比數(shù)列,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿足下列條件:①對(duì)任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.18.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.20.(12分)已知集合,.(1)若,則;(2)若,求實(shí)數(shù)的取值范圍.21.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.22.(10分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問(wèn)題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.3、B【解析】

利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項(xiàng)和公式得【詳解】解:因?yàn)?,由等差?shù)列性質(zhì),若,則得,.為數(shù)列的前項(xiàng)和,則.故選:.【點(diǎn)睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項(xiàng)和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項(xiàng)和公式的靈活應(yīng)用,如.4、D【解析】

先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.【點(diǎn)睛】本題考查子集的個(gè)數(shù)問(wèn)題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).5、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.6、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點(diǎn)睛】本題主要考查了分組分配問(wèn)題,解決這類問(wèn)題的關(guān)鍵是先分組再分配,屬于??碱}型.7、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.8、A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點(diǎn)睛】本題考查了函數(shù)值的求法,考查對(duì)數(shù)的運(yùn)算和對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.9、C【解析】

如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.10、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【點(diǎn)睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.11、A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.12、B【解析】

先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點(diǎn)睛】本題主要考查了體積類的幾何概型問(wèn)題,屬于基礎(chǔ)題.14、【解析】

從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會(huì)的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的情況共有種,所以其概率為.故答案為:【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個(gè)數(shù).15、乙、丁【解析】

本題首先可根據(jù)題意中的“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所猜測(cè)的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測(cè)正確,則乙,丙,丁猜測(cè)錯(cuò)誤,與題意不符,故甲猜測(cè)錯(cuò)誤;若乙猜測(cè)正確,則依題意丙猜測(cè)無(wú)法確定正誤,丁猜測(cè)錯(cuò)誤;若丙猜測(cè)正確,則丁猜測(cè)錯(cuò)誤;綜上只有乙,丙猜測(cè)不矛盾,依題意乙,丙猜測(cè)是正確的,從而得出乙,丁獲獎(jiǎng).所以本題答案為乙、丁.【點(diǎn)睛】本題是一個(gè)簡(jiǎn)單的合情推理題,能否根據(jù)“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目所給條件分為四種情況并通過(guò)推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.16、13【解析】

根據(jù)點(diǎn)在直線上可求得,由等比中項(xiàng)的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點(diǎn)睛】本題考查根據(jù)三項(xiàng)成等比數(shù)列求解參數(shù)值的問(wèn)題,涉及到等比中項(xiàng)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)(?。┰斠?jiàn)解析.(ⅱ)詳見(jiàn)解析.(Ⅲ)詳見(jiàn)解析.【解析】

(Ⅰ)當(dāng),時(shí),,,,,,.即可得出.(Ⅱ)(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過(guò)求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時(shí),,,,,..(Ⅱ)證明:(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則,而,與已知對(duì)任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.18、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)對(duì)函數(shù)求導(dǎo),對(duì)參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡(jiǎn)換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)既無(wú)極大值,也無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問(wèn)題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.19、(1);(2)證明見(jiàn)解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時(shí),方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時(shí),,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時(shí),在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時(shí),不等式恒成立,的最小值為.(2)由第(1)知:若時(shí),.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問(wèn)題、證明數(shù)列不等式問(wèn)題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計(jì)算能力,是一道難題.20、(1);(2)【解析】

(1)將代入可得集合B,解對(duì)數(shù)不等式可得集合A,由并集運(yùn)算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時(shí),由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因?yàn)?,故;若,即時(shí),,符合題意;若,即時(shí),,解得;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了集合的并集運(yùn)算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.21、(Ⅰ),;(Ⅱ)見(jiàn)解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡(jiǎn)求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論