版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)建模之運(yùn)籌學(xué)第1頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月數(shù)學(xué)建模簡(jiǎn)介第2頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月一般地,數(shù)學(xué)模型可以描述為,對(duì)于現(xiàn)實(shí)世界的一個(gè)特定對(duì)象,為了一個(gè)特定目的,根據(jù)特有的內(nèi)在規(guī)律,作出一些必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu)。把現(xiàn)實(shí)世界中的實(shí)際問(wèn)題加以提煉,抽象為數(shù)學(xué)模型,求出模型的解,驗(yàn)證模型的合理性,并用該數(shù)學(xué)模型所提供的解答來(lái)解釋現(xiàn)實(shí)問(wèn)題,我們把數(shù)學(xué)知識(shí)的這一應(yīng)用過(guò)程稱為數(shù)學(xué)建模。數(shù)學(xué)模型或者能解釋特定現(xiàn)象的現(xiàn)實(shí)狀態(tài),或者能預(yù)測(cè)到對(duì)象的未來(lái)狀況,或者能提供處理對(duì)象的最優(yōu)決策或控制。
第3頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月數(shù)學(xué)模型的分類1、按模型的應(yīng)用領(lǐng)域分類:生物數(shù)學(xué)模型醫(yī)學(xué)數(shù)學(xué)模型地質(zhì)數(shù)學(xué)模型數(shù)量經(jīng)濟(jì)學(xué)模型數(shù)學(xué)社會(huì)學(xué)模型2、按是否考慮隨機(jī)因素分類:確定性模型隨機(jī)性模型3、按是否考慮模型的變化分類:靜態(tài)模型動(dòng)態(tài)模型第4頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月4、按應(yīng)用離散方法或連續(xù)方法分類:離散模型連續(xù)模型5、按建立模型的數(shù)學(xué)方法分類:幾何模型微分方程模型圖論模型規(guī)劃論模型馬氏鏈模型第5頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月6、按人們對(duì)是物發(fā)展過(guò)程的了解程度分類:(1)白箱模型:指那些內(nèi)部規(guī)律比較清楚的模型。如力學(xué)、熱學(xué)、電學(xué)以及相關(guān)的工程技術(shù)問(wèn)題。(2)灰箱模型:指那些內(nèi)部規(guī)律尚不十分清楚,在建立和改善模型方面都還不同程度地有許多工作要做的問(wèn)題。如氣象學(xué)、生態(tài)學(xué)經(jīng)濟(jì)學(xué)等領(lǐng)域的模型。(3)黑箱模型:指一些其內(nèi)部規(guī)律還很少為人們所知的現(xiàn)象。如生命科學(xué)、社會(huì)科學(xué)等方面的問(wèn)題。但由于因素眾多、關(guān)系復(fù)雜,也可簡(jiǎn)化為灰箱模型來(lái)研究。
第6頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月數(shù)學(xué)建模的幾個(gè)過(guò)程
1、模型準(zhǔn)備
2、模型假設(shè)
3、模型建立
4、模型構(gòu)成
5、模型求解
6、模型分析
7、模型檢驗(yàn)8、模型應(yīng)用
第7頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月模型準(zhǔn)備了解實(shí)際背景明確建模目的搜集有關(guān)信息掌握對(duì)象特征形成一個(gè)比較清晰的‘問(wèn)題’模型假設(shè)針對(duì)問(wèn)題特點(diǎn)和建模目的作出合理的、簡(jiǎn)化的假設(shè)在合理與簡(jiǎn)化之間作出折中第8頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月模型建立用數(shù)學(xué)的語(yǔ)言、符號(hào)描述問(wèn)題發(fā)揮想像力使用類比法盡量采用簡(jiǎn)單的數(shù)學(xué)工具各種數(shù)學(xué)方法、軟件和計(jì)算機(jī)技術(shù)如結(jié)果的誤差分析、統(tǒng)計(jì)分析、模型對(duì)數(shù)據(jù)的穩(wěn)定性分析模型求解模型分析第9頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月模型檢驗(yàn)
與實(shí)際現(xiàn)象、數(shù)據(jù)比較,檢驗(yàn)?zāi)P偷暮侠硇?、適用性模型應(yīng)用第10頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月數(shù)學(xué)建模有助于培養(yǎng)以下幾個(gè)方面的素質(zhì)和能力:數(shù)學(xué)素質(zhì)和能力計(jì)算機(jī)應(yīng)用能力論文寫(xiě)作能力團(tuán)隊(duì)合作精神和進(jìn)行協(xié)調(diào)的組織能力培養(yǎng)想象能力發(fā)展觀察力,形成洞察力勇于參與的競(jìng)爭(zhēng)意識(shí)和不怕困難、奮力攻關(guān)的頑強(qiáng)意志第11頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月為培養(yǎng)和選拔優(yōu)秀的數(shù)學(xué)人才,世界各國(guó)有各種不同形式不同層次的數(shù)學(xué)競(jìng)賽.傳統(tǒng)的數(shù)學(xué)競(jìng)賽只局限于演繹、推理等純數(shù)學(xué)形式,它不能培養(yǎng)和發(fā)展學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,不能滿足科學(xué)技術(shù)飛速發(fā)展的時(shí)代需要.從1983年起,在美國(guó)就有一些有識(shí)之士開(kāi)始探討組織一項(xiàng)應(yīng)用數(shù)學(xué)方面的競(jìng)賽的可能性.第12頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月1985年美國(guó)第一屆大學(xué)生數(shù)學(xué)建模競(jìng)賽(mathematicalcompetitioninmodeling)1988年改為mathematicalcontestinmodeling簡(jiǎn)稱MCM.由美國(guó)工業(yè)與應(yīng)用數(shù)學(xué)會(huì)和美國(guó)運(yùn)籌學(xué)會(huì)聯(lián)合舉辦.1985年起每年舉行一屆,一般在每年的二月下旬或三月初的某個(gè)星期五或星期日舉行.美國(guó)競(jìng)賽評(píng)出Outstanding,Meritorious,HonorableMention及SuccessfulParticipation等級(jí)別.第13頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月1989年北京的三所大學(xué)組隊(duì)參加美國(guó)的MCM競(jìng)賽,此后我國(guó)的參賽隊(duì)伍越來(lái)越多.1992-1993年中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)(CSIAM)舉辦了兩次中國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽.1994年起,由國(guó)家教委(教育部)高教司和中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)共同于每年9月舉辦,1999年開(kāi)始設(shè)立大專組的競(jìng)賽.第14頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月無(wú)論是美國(guó)還是我國(guó)大學(xué)本科組數(shù)學(xué)建模競(jìng)賽題每年都是兩道,參賽隊(duì)從中任選一道題目.一般來(lái)說(shuō)其中一道是連續(xù)型,另一道是離散型;或者一道是開(kāi)放型的,另一道是嚴(yán)謹(jǐn)型的.競(jìng)賽內(nèi)容或題目是由工程技術(shù)、管理科學(xué)中的實(shí)際問(wèn)題簡(jiǎn)化而成,留有充分余地供參賽者發(fā)揮其聰明才智和創(chuàng)造精神.競(jìng)賽形式為三名學(xué)生組成一隊(duì),可以自由地收集資料、調(diào)查研究,使用計(jì)算機(jī)、因特網(wǎng)和任何軟件,在三天時(shí)間內(nèi)分工合作完成一篇論文.評(píng)獎(jiǎng)標(biāo)準(zhǔn)為模型假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的準(zhǔn)確性和文字表述的清晰程度.第15頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月初等模型第16頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月一輛汽車在拐彎時(shí)急剎車,結(jié)果沖到路邊的溝里(見(jiàn)下圖),交通警察立即趕到了事故現(xiàn)場(chǎng)。司機(jī)申辯說(shuō),當(dāng)他進(jìn)入彎道時(shí)剎車失靈,他還一口咬定,進(jìn)入彎道其車速為每小時(shí)40英里(這是該路的速度上限,約合每秒17.92米)。警察驗(yàn)車時(shí)證實(shí)該車的制動(dòng)器在事故發(fā)生時(shí)確實(shí)失靈,然而,司機(jī)所說(shuō)的車速是否真實(shí)可信呢?第17頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月
現(xiàn)在,讓我們幫警察計(jì)算一下司機(jī)所報(bào)速度的真實(shí)性。連接剎車痕跡的初始點(diǎn)和終點(diǎn),用x表示沿連線汽車橫向所走出的距離,用y表示豎直的距離,如下圖第18頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月
上面的表中,我們給出了外側(cè)剎車痕跡的有關(guān)值,而且,經(jīng)過(guò)測(cè)量還發(fā)現(xiàn),該車并沒(méi)有偏離它所行駛的轉(zhuǎn)彎路線,也就是說(shuō),它的車頭一直指向切線方向??梢约僭O(shè),該車的重心是沿一個(gè)半徑為r的圓做圓周運(yùn)動(dòng)。假設(shè)磨擦力作用在該車速度的法線方向上,并設(shè)汽車的速度v是一個(gè)常數(shù)。顯然,磨擦力提供了向心力,設(shè)磨擦系數(shù)為μ,則其中m為汽車質(zhì)量.由上式易得
如何計(jì)算圓周半徑r?假設(shè)已知弦的長(zhǎng)度為c,弓形的高度為h,其圖如下所示,由勾股定理知第19頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月
由前面的表中代入近似數(shù)據(jù)c=33.27,h=3.55后,得r=40.75米根據(jù)實(shí)際路面與汽車輪胎的情況,可以測(cè)量出磨擦系數(shù),經(jīng)過(guò)實(shí)際測(cè)試得到g=8.175米/秒2
將此結(jié)果代入我們上面利用第二定律所得到的式子中,得v≈18.25米/秒此結(jié)果比司機(jī)所報(bào)速度(17.92米/秒)略大。但是,我們不得不考慮計(jì)算半徑r及測(cè)試時(shí)的誤差。如果誤差允許在10%以內(nèi),無(wú)疑,此計(jì)算結(jié)果對(duì)司機(jī)是相當(dāng)有利的。
第20頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月椅子能在不平的地面上放穩(wěn)嗎?
把四只腳的椅子往不平的地面上一放,通常只有三只腳著地,放不穩(wěn),然而有人認(rèn)為只要稍挪動(dòng)幾次,就可以四腳著地,放穩(wěn)了,對(duì)嗎?第21頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月問(wèn)題分析
通常三只腳著地
放穩(wěn)的標(biāo)準(zhǔn):四只腳著地
四條腿一樣長(zhǎng),椅腳與地面點(diǎn)接觸,四腳連線呈正方形;
地面高度連續(xù)變化,可視為數(shù)學(xué)上的連續(xù)曲面;
地面相對(duì)平坦,使椅子在任意位置至少三只腳同時(shí)著地。模型假設(shè)第22頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月建立模型用數(shù)學(xué)語(yǔ)言把椅子位置和四只腳著地的關(guān)系表示出來(lái).
椅子位置利用正方形(椅腳連線)的對(duì)稱性用(對(duì)角線與x軸的夾角)表示椅子位置
四只腳著地椅腳與地面距離為零距離是的函數(shù)xBADCOD′C′B′A′四個(gè)距離(四只腳)兩個(gè)距離正方形對(duì)稱性正方形ABCD繞O點(diǎn)旋轉(zhuǎn)A,C兩腳與地面距離之和記為f()B,D兩腳與地面距離之和記為g()第23頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月用數(shù)學(xué)語(yǔ)言把椅子位置和四只腳著地的關(guān)系表示出來(lái).f(),g()是連續(xù)函數(shù)對(duì)任意,f(),g()至少一個(gè)為0數(shù)學(xué)問(wèn)題已知:f(),g()是連續(xù)函數(shù);對(duì)任意,f()?g()=0;且g(0)=0,f(0)>0.證明:存在0,使f(0)=g(0)=0.地面為連續(xù)曲面
椅子在任意位置至少三只腳著地第24頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月模型求解
將椅子旋轉(zhuǎn)900,對(duì)角線AC和BD互換.由g(0)=0,f(0)>0,知f(/2)=0,g(/2)>0.令h()=f()–g(),則h(0)>0和h(/2)<0.由f,g的連續(xù)性知
h為連續(xù)函數(shù),據(jù)連續(xù)函數(shù)的基本性質(zhì),必存在0,使h(0)=0,即f(0)=g(0).因?yàn)閒()?g()=0,所以f(0)=g(0)=0.評(píng)注和思考建模的關(guān)鍵
:和f(),g()的確定.
模型假設(shè)中四腳呈正方形不是本質(zhì)的,讀者可考慮長(zhǎng)方形的情形.第25頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月數(shù)學(xué)規(guī)劃模型第26頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月實(shí)際問(wèn)題中的優(yōu)化模型x~決策變量f(x)~目標(biāo)函數(shù)gi(x)0~約束條件多元函數(shù)條件極值
決策變量個(gè)數(shù)n和約束條件個(gè)數(shù)m較大
最優(yōu)解在可行域的邊界上取得
重點(diǎn)在模型的建立和結(jié)果的分析第27頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月無(wú)約束優(yōu)化線性規(guī)劃非線性規(guī)劃整數(shù)規(guī)劃多目標(biāo)規(guī)劃動(dòng)態(tài)規(guī)劃等等第28頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月線性規(guī)劃第29頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月設(shè)每月生產(chǎn)小、中、大型汽車的數(shù)量分別為x1,x2,x3汽車廠生產(chǎn)計(jì)劃
模型建立
小型中型大型現(xiàn)有量鋼材1.535600時(shí)間28025040060000利潤(rùn)234線性規(guī)劃模型(LP)第30頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月模型求解
3)
模型中增加條件:x1,x2,x3
均為整數(shù),重新求解。
OBJECTIVEFUNCTIONVALUE1)632.2581VARIABLEVALUEREDUCEDCOST
X164.516129
0.000000
X2167.741928
0.000000
X30.0000000.946237ROWSLACKORSURPLUSDUALPRICES2)0.0000000.7311833)0.0000000.0032261)舍去小數(shù):取x1=64,x2=167,算出目標(biāo)函數(shù)值z(mì)=629,與LP最優(yōu)值632.2581相差不大。2)試探:如取x1=65,x2=167;x1=64,x2=168等,計(jì)算函數(shù)值z(mì),通過(guò)比較可能得到更優(yōu)的解。但必須檢驗(yàn)它們是否滿足約束條件。為什么?結(jié)果為小數(shù),怎么辦?第31頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月IP可用LINDO直接求解整數(shù)規(guī)劃(IntegerProgramming,簡(jiǎn)記IP)“gin3”表示“前3個(gè)變量為整數(shù)”,等價(jià)于:ginx1ginx2ginx3IP的最優(yōu)解x1=64,x2=168,x3=0,最優(yōu)值z(mì)=632
max2x1+3x2+4x3st1.5x1+3x2+5x3<600280x1+250x2+400x3<60000endgin3OBJECTIVEFUNCTIONVALUE1)632.0000VARIABLEVALUEREDUCEDCOSTX164.000000-2.000000X2168.000000-3.000000X30.000000-4.000000
模型求解
IP結(jié)果輸出第32頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月其中3個(gè)子模型應(yīng)去掉,然后逐一求解,比較目標(biāo)函數(shù)值,再加上整數(shù)約束,得最優(yōu)解:方法1:分解為8個(gè)LP子模型
汽車廠生產(chǎn)計(jì)劃若生產(chǎn)某類汽車,則至少生產(chǎn)80輛,求生產(chǎn)計(jì)劃。x1,x2,,x3=0或80x1=80,x2=150,x3=0,最優(yōu)值z(mì)=610第33頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月LINDO中對(duì)0-1變量的限定:inty1inty2inty3方法2:引入0-1變量,化為整數(shù)規(guī)劃
M為大的正數(shù),可取1000OBJECTIVEFUNCTIONVALUE1)610.0000VARIABLEVALUEREDUCEDCOST
X180.000000
-2.000000
X2150.000000-3.000000
X30.000000
-4.000000Y11.0000000.000000Y21.0000000.000000Y30.0000000.000000
若生產(chǎn)某類汽車,則至少生產(chǎn)80輛,求生產(chǎn)計(jì)劃。x1=0或
80x2=0或
80x3=0或
80最優(yōu)解同前
第34頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月NLP雖然可用現(xiàn)成的數(shù)學(xué)軟件求解(如LINGO,MATLAB),但是其結(jié)果常依賴于初值的選擇。
方法3:化為非線性規(guī)劃
非線性規(guī)劃(Non-LinearProgramming,簡(jiǎn)記NLP)
實(shí)踐表明,本例僅當(dāng)初值非常接近上面方法算出的最優(yōu)解時(shí),才能得到正確的結(jié)果。
若生產(chǎn)某類汽車,則至少生產(chǎn)80輛,求生產(chǎn)計(jì)劃。x1=0或
80x2=0或
80x3=0或
80第35頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月非線性規(guī)劃第36頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月
某公司有6個(gè)建筑工地要開(kāi)工,每個(gè)工地的位置(用平面坐標(biāo)系a,b表示,距離單位:千米)及水泥用量d(噸)如下:123456abd1.251.2538.750.7550.54.7545.755736.567.257.2511
為保障供應(yīng),需建兩個(gè)料場(chǎng),日儲(chǔ)量各為20噸,問(wèn)應(yīng)建在何處,使總的噸千米數(shù)最小,并試制定每天的供應(yīng)計(jì)劃.第37頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月一個(gè)有約束條件的非線性規(guī)劃問(wèn)題的解法大致分為:①
用線性規(guī)劃、二次規(guī)劃來(lái)逐步逼近非線性規(guī)劃的方法;②
對(duì)約束非線性規(guī)劃問(wèn)題不預(yù)先作轉(zhuǎn)換的直接求解方法,如隨機(jī)試驗(yàn)法等;③
對(duì)約束非線性規(guī)劃問(wèn)題不預(yù)先作轉(zhuǎn)換,直接進(jìn)行處理的分析方法,如可行方向法、凸單純形法等;④
把約束非線性規(guī)劃問(wèn)題轉(zhuǎn)換為無(wú)約束非線性規(guī)劃來(lái)求解的方法,如SUMT外點(diǎn)法、SUMT內(nèi)點(diǎn)法、乘子法等。第38頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月整數(shù)規(guī)劃第39頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月為了選修課程門數(shù)最少,應(yīng)學(xué)習(xí)哪些課程?
選課策略選修課程最少,且學(xué)分盡量多,應(yīng)學(xué)習(xí)哪些課程?
課號(hào)課名學(xué)分所屬類別先修課要求1微積分5數(shù)學(xué)
2線性代數(shù)4數(shù)學(xué)
3最優(yōu)化方法4數(shù)學(xué);運(yùn)籌學(xué)微積分;線性代數(shù)4數(shù)據(jù)結(jié)構(gòu)3數(shù)學(xué);計(jì)算機(jī)計(jì)算機(jī)編程5應(yīng)用統(tǒng)計(jì)4數(shù)學(xué);運(yùn)籌學(xué)微積分;線性代數(shù)6計(jì)算機(jī)模擬3計(jì)算機(jī);運(yùn)籌學(xué)計(jì)算機(jī)編程7計(jì)算機(jī)編程2計(jì)算機(jī)
8預(yù)測(cè)理論2運(yùn)籌學(xué)應(yīng)用統(tǒng)計(jì)9數(shù)學(xué)實(shí)驗(yàn)3運(yùn)籌學(xué);計(jì)算機(jī)微積分;線性代數(shù)第40頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月0-1規(guī)劃模型
決策變量
目標(biāo)函數(shù)
xi=1~選修課號(hào)i的課程(xi=0~不選)
選修課程總數(shù)最少
約束條件課號(hào)課名所屬類別1微積分?jǐn)?shù)學(xué)2線性代數(shù)數(shù)學(xué)3最優(yōu)化方法數(shù)學(xué);運(yùn)籌學(xué)4數(shù)據(jù)結(jié)構(gòu)數(shù)學(xué);計(jì)算機(jī)5應(yīng)用統(tǒng)計(jì)數(shù)學(xué);運(yùn)籌學(xué)6計(jì)算機(jī)模擬計(jì)算機(jī);運(yùn)籌學(xué)7計(jì)算機(jī)編程計(jì)算機(jī)8預(yù)測(cè)理論運(yùn)籌學(xué)9數(shù)學(xué)實(shí)驗(yàn)運(yùn)籌學(xué);計(jì)算機(jī)最少2門數(shù)學(xué)課,3門運(yùn)籌學(xué)課,2門計(jì)算機(jī)課。
第41頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月先修課程要求最優(yōu)解:
x1=x2=x3=x6=x7=x9=1,其它為0;6門課程,總學(xué)分210-1規(guī)劃模型
約束條件x3=1必有x1=x2=1模型求解(LINDO)課號(hào)課名先修課要求1微積分
2線性代數(shù)
3最優(yōu)化方法微積分;線性代數(shù)4數(shù)據(jù)結(jié)構(gòu)計(jì)算機(jī)編程5應(yīng)用統(tǒng)計(jì)微積分;線性代數(shù)6計(jì)算機(jī)模擬計(jì)算機(jī)編程7計(jì)算機(jī)編程
8預(yù)測(cè)理論應(yīng)用統(tǒng)計(jì)9數(shù)學(xué)實(shí)驗(yàn)微積分;線性代數(shù)第42頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月學(xué)分最多多目標(biāo)優(yōu)化的處理方法:化成單目標(biāo)優(yōu)化。兩目標(biāo)(多目標(biāo))規(guī)劃
討論:選修課程最少,學(xué)分盡量多,應(yīng)學(xué)習(xí)哪些課程?
課程最少
以學(xué)分最多為目標(biāo),不管課程多少。
以課程最少為目標(biāo),不管學(xué)分多少。最優(yōu)解如上,6門課程,總學(xué)分21。最優(yōu)解顯然是選修所有9門課程。第43頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月多目標(biāo)規(guī)劃
在課程最少的前提下以學(xué)分最多為目標(biāo)。注意:最優(yōu)解不唯一!課號(hào)課名學(xué)分1微積分52線性代數(shù)43最優(yōu)化方法44數(shù)據(jù)結(jié)構(gòu)35應(yīng)用統(tǒng)計(jì)46計(jì)算機(jī)模擬37計(jì)算機(jī)編程28預(yù)測(cè)理論29數(shù)學(xué)實(shí)驗(yàn)3LINDO無(wú)法告訴優(yōu)化問(wèn)題的解是否唯一。可將x9=1易為x6=1增加約束,以學(xué)分最多為目標(biāo)求解。最優(yōu)解:
x1=x2=x3=x5=x7=x9=1,
其它為0;總學(xué)分由21增至22。第44頁(yè),課件共68頁(yè),創(chuàng)作于2023年2月多目標(biāo)規(guī)劃
對(duì)學(xué)分?jǐn)?shù)和課程數(shù)加權(quán)形成一個(gè)目標(biāo),如三七開(kāi)。課號(hào)課名學(xué)分1微積分52線性代數(shù)43最優(yōu)化方法44數(shù)據(jù)結(jié)構(gòu)35應(yīng)用統(tǒng)計(jì)46計(jì)算機(jī)模擬37計(jì)算機(jī)編程28預(yù)測(cè)理論29數(shù)學(xué)實(shí)驗(yàn)3最優(yōu)解:
x1=x2=x3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省恩施市2025-2026學(xué)年上學(xué)期期末八年級(jí)數(shù)學(xué)試卷(無(wú)答案)
- 廣東省東莞市常平鎮(zhèn)2025-2026學(xué)年九年級(jí)上學(xué)期1月期末歷史試卷(含答案)
- 五年級(jí)測(cè)試卷及答案
- 文員考試試題及答案
- 《遇見(jiàn)未知的自我》讀后感范本
- 2022-2023學(xué)年山東省東營(yíng)市墾利區(qū)九年級(jí)物理第一學(xué)期期末調(diào)研試題含解析
- 2022屆高考數(shù)學(xué)基礎(chǔ)總復(fù)習(xí)提升之專題突破詳解專題10三角函數(shù)的圖象與性質(zhì)含解析
- 六盤(pán)水中考滿分作文賞析:書(shū)給了我力量
- 22春“安全工程”專業(yè)《安全檢測(cè)及儀表》在線作業(yè)含答案參考2
- 師德以身作則演講稿
- 2026年陜西省森林資源管理局局屬企業(yè)公開(kāi)招聘工作人員備考題庫(kù)帶答案詳解
- 規(guī)范園區(qū)環(huán)保工作制度
- 2026廣東深圳市龍崗中心醫(yī)院招聘聘員124人筆試備考試題及答案解析
- 藥理學(xué)試題中國(guó)藥科大學(xué)
- 2025年同工同酬臨夏市筆試及答案
- 2026年孝昌縣供水有限公司公開(kāi)招聘正式員工備考題庫(kù)及答案詳解(考點(diǎn)梳理)
- 卓越項(xiàng)目交付之道
- (人教版)八年級(jí)物理下冊(cè)第八章《運(yùn)動(dòng)和力》單元測(cè)試卷(原卷版)
- 2026屆新高考語(yǔ)文熱點(diǎn)沖刺復(fù)習(xí) 賞析小說(shuō)語(yǔ)言-理解重要語(yǔ)句含意
- 創(chuàng)世紀(jì)3C數(shù)控機(jī)床龍頭、高端智能裝備與產(chǎn)業(yè)復(fù)蘇雙輪驅(qū)動(dòng)
- 集資入股協(xié)議書(shū)范本
評(píng)論
0/150
提交評(píng)論