2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析_第1頁
2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析_第2頁
2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析_第3頁
2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析_第4頁
2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析_第5頁
全文預覽已結(jié)束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年福建省泉州市樂峰中學高一數(shù)學理月考試卷含解析lim(—―/)=—

5.已知等比數(shù)列{4}的首項為力,公比為q,且有…1+g2,則首項的取值范圍

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是()。

是一個符合題目要求的

0<a<1且%w

YB0<?!<3或的=-3

I.函數(shù)/(乃=lnx+2x—8的零點所在區(qū)間是()A

A.(0,1)B.(1,2)C.(2,3)D.(3,4)0<al4口0<勺<1且%=(或%=3

參考答案:C

D參考答案:

2.汽車經(jīng)過啟動、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車的行駛路

①”1時,幽寸-1)=-o

程s看作時間£的函數(shù),其圖像可能是()解析:Do2,勺二3;

②張1且"0時出(含)弓為1+9

且"0,且a-5…選R

參考答案:

6.若偶函數(shù)/(x)(xe處在(-8⑼為增函數(shù),則不等式/(x-l)2/(D的解集為

A

A.(一8,0]B.[°,2](2.[2,+oo)D.(一8,°]U[2,+oo)

3.若函數(shù)/妗,雙吟分別是R上的奇函數(shù),偶函數(shù),且滿足*,一/,則有

參考答案:

A.¥0)。的B,鼠。"邠”夕⑶

B

C.收)<整信“⑶D.3輅xy領

.已知區(qū)間則(

參考答案:71>{1,2,3,4,5},A={1,2,3},B={1,4},ZA)C1B=()

A.{4}B.{1}C.{4,5}D.{1,4,5}

D

參考答案:

4.已知y=f(x)是偶函數(shù),當x>0時,f(x)=(x—1產(chǎn),若當xeL2」時,nSf(x)Sm恒成立,則m—nA

【考點】交、并、補集的混合運算.

的最小值為()

113【分析】直接利用交、并、補集的混合運算得答案.

---

324【解答】解:VU={1,2,3,4,5},A=(l,2,3},

B.[).

????屈:又,

參考答案:{4,5},B=U4},

???(?rA)PB=⑷.

D

故選:A.

8.設有直線m、n和平面a、聲,下列四個命題中,正確的是

A.若m||a,A%則m||n

B.若a,力ua,m||尸,n||夕則。||£

C.若a,#,mua,則心,廣

D.若)■*■£,附戶,冽<za,則m||a

參考答案:

D

參考答案:

-(14-2sii(n4-6)sn(--6)

9.已知0W[2,TI],則[2=()

12

A.sinG-cos0B.cosG-sinGC.土(sin。-cos。)D.sinG+cosO

參考答案:12.已知cosa40<a<7r,則同(a+?

【考點】三角函數(shù)的化簡求值.參考答案:

【分析】直接由三角函數(shù)的誘導公式化簡結(jié)合已知條件計算即可得答案.

-7

【解答】解:由€合'叫)

e^l+2Sin(K+0)sin€y-9【考點】兩角和與差的正切函數(shù).

【專題】三角函數(shù)的求值.

2

=71+2(-sin0)cose=V(sin0-cos0)=|sin0.CosO|=sin0-cosO,

【分析】利用三角函數(shù)的平方關系和商數(shù)關系即可得到tana,再利用兩角和的正切公式即可得出.

故選:A.【解答】解「產(chǎn)。4>。,。<"兀,”<"與sina〉o,

==

10.耀5是直線(加+2)工+3陽+1=°與直線(雨-2"+(附+2?-3=°相互垂直的:2

Asina=Vl-cosa4故百。=舞4,

A.充分必要條件B.充分而不必要條兀4

tanCl+tan—-z+1

1(a+?=---------------------Sf'一

件3n

1-tand*tan-1---

???43

C.必要而不充分條件D.既不充分也不必要條件

故答案為-7.

【點評】熟練掌握三角函數(shù)的平方關系和商數(shù)關系、兩角和的正切公式是解題的關鍵.

參考答案:

13.如圖,一個空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的

B

直角邊的長為1,那么這個幾何體的表面積為.

二、填空題:本大題共7小題,每小題4分,共28分

II.如圖所示,程序框圖(算法流程圖)的輸出值x=—

sn^=——

【4

cos3=-----

因為,<0㈤,所以sin,>0,所以5不合題意,舍去

2tan624

tan一二

]一52,~7

八424

tanG—-

~1.

參考答案:所以3,所以,答案應填:

考點:同角三角函數(shù)的基本關系和兩角差的三角函數(shù)公式.

3+百

16.如圖,E,F,G分別是四面體ABCD的棱BC、CD、DA的中點,則此四面體與過E,F,G的截面平行

2

的棱的條數(shù)是.

14.某工廠對一批元件進行了抽樣檢測,根據(jù)抽樣檢測后的元件長度(單位:mm)數(shù)據(jù)繪制了

頻率分布直方圖(如圖).若規(guī)定長度在[99,103)內(nèi)的元件是合格品,則根據(jù)頻率分布直方圖

估計這批產(chǎn)品的合格品率是

參考答案:

2

【考點】LP:空間中直線與平面之間的位置關系.

【分析】推導出是中位線,從而〃進而〃平面同理〃平面由此能

參考答案:EFaBCDBDEF,BDEFG,ACEFG.

求出此四面體與過E,F,G的截面平行的棱的條數(shù).

56%

【解答】解:如圖,E、F分別為四面體ABCD的棱BC、CD的中點,

AEF是ABCD中位線,,BD〃EF,

15.已知。七(°㈤,且W7)一而,則3>笫=

〈BD?平面EFG,EF?平面EFG

參考答案:???BD〃平面EFG,

24同理AC〃平面EFG.

T故此四面體與過E,F,G的截面平行的樓的條數(shù)是2.

故答案為:2.

sin(^--)=—

試題分析:由410得:

?jnQ——snG=——

r55

L3I4

cos6=—cos8—

解方程組:5或5

解得:xr-1,xW-3

?'.定義域是:(x|x€R,且x#?1且xr?3)

19.it?:0g2)2+lg20lg5+lg5強分)

BD參考答案:

1

20.在"BC中,a,b,c分別是角A,B,C的對邊,已知3(。+〃)=3/+2歷.

17.已知向量a=(2,-1),b=(-1,m),c=(-l,2),若(才b)〃c,則m=.

(1)若sin8=J5cosC,求tanC的大小;

參考答案:

-1

(2)若a=2,AA8C的面積S=2,且6",求6,<?.

【考點】9K:平面向量共線(平行)的坐標表示.

參考答案:

【分析】先求出兩個向量的和的坐標,再根據(jù)向量平行的充要條件寫出關于m的等式,解方程得到要

求的數(shù)值,注意公式不要用錯公式.b_3版,=也

⑴lanC=6:(2)22.

【解答】Va+b=(1,m-1),

試題分析:(1)根據(jù)已知條件及余弦定理可求得而〃的值,再由同角三角函數(shù)基本關系式可求得向4

(a^b)//c

的值.因為所以sin('+C)=&8sC由兩角和的正弦公式可將其化簡變形,可求

A1X2-(m-1)X(-1)=0,

所以m=T得!inC與cosC的關系式,從而可得tanC.Q)根據(jù)余弦定理和三角形面積均可得瓦,的關系式.從而可

故答案為:-1

解得瓦c的值.

三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟

試題解析:,門付+,)=。+加,

____1

18.求下列函數(shù)的定義域:(1)y=V2x+lWwx:(2)廠|x+2|-l..1

"-Uc3.

參考答案:

【考點】33:函數(shù)的定義域及其求法.

【分析】(1)根據(jù)負數(shù)不能開偶次方根求解,即根下的數(shù)大于等于零,兩個根式函數(shù)分別求得結(jié)果

⑴?一?二()

后取交集.inB=&msC,.4+C=0cosC,

(2)分母不能為零,要注意絕對值的解法..■.^^-cosC+-anC=A^cosC

r2x+l>033,

【解答】解:(1)根據(jù)題意有:l3-4x>0

.".^^cnsC=-sinC廠

<X<33,..tanC=V2

解得:44

[―,—]"S=—:.-bcsnA=—:.bc=-

故定義域為:L2'4」⑵2,22,2,①

(2)根據(jù)題意:|x+2|-l#0

4=^2+c2-2&cxl【答案】(I)詳見解析3(〃)詳見解析;

???a=2,二由余弦定理可得3,【解析】

試題分析:(/)先在(0:+工)上任取兩變量埠均,設W<七,再對,(七):/(不)作差變形化簡,判斷

二廿《,二5,②

/(再)/3)大小確定單制立

二也仁=包

?M>r>0,.?.聯(lián)立①?可得一丁“一了(0)要求由數(shù)『(G的零點,即求方程;(Q-0的根,對:>0和X0O分情況求解,其中當X0O時,

令/(x)=0,即(。-】)%+】=0,對此方程中參數(shù)。對t艮的情況進行討論求解

考點:1正弦定理;2余弦定理;3兩角和差公式.

咽解析:⑴證明在(0,+H)上任取兩個實數(shù)冷電且工心"

21.a,h,c為AABC的三邊,其面積Szu8c=12后,bc=48,b-c=2,求a.

(\\(1、11Y_Y

則"可)一/(七)=?1?一?1.....................?分

參考答案:卜玉,\小,七演aw

20<x;不一/〈。.再/>0.

解:由S^ABC=2ZJCSIILA?得

.,.^^-<0即〃甬)—〃七)<0.../(不)<〃々).

耳受

2

12后=2x48xsinA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論