安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題含解析_第1頁
安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題含解析_第2頁
安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題含解析_第3頁
安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題含解析_第4頁
安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省部分省示范中學2024屆高一上數(shù)學期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)對于任意兩個不相等實數(shù),都有成立,則實數(shù)的取值范圍是()A. B.C. D.2.已知角的頂點為坐標原點,始邊為軸正半軸,終邊經(jīng)過點,則()A. B.C. D.3.已知命題,;命題,.若,都是假命題,則實數(shù)的取值范圍為()A. B.C.或 D.4.如下圖所示,在正方體中,下列結(jié)論正確的是A.直線與直線所成的角是 B.直線與平面所成的角是C.二面角的大小是 D.直線與平面所成的角是5.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A.(0,1) B.(1,2)C.(2,3) D.(3,4)6.命題:“,”的否定是()A., B.,C., D.,7.函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)的取值范圍是()A. B.C. D.8.已知命題:“,方程有解”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.9.設(shè),則的大小關(guān)系()A. B.C. D.10.我國著名數(shù)學家華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也可用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如通過函數(shù)的解析式可判斷其在區(qū)間的圖象大致為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,半徑為,則扇形的面積為______12.設(shè)函數(shù)的定義域為,若函數(shù)滿足條件:存在,使在上的值域是,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是_______13.已知函數(shù),若函數(shù)的最小值與函數(shù)的最小值相等,則實數(shù)的取值范圍是__________14.已知,,,則有最大值為__________15.已知角的終邊過點,則______16.已知函數(shù),若,,則的取值范圍是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)計算:()0.5+(-3)-1÷0.75-2-;(2)設(shè)0<a<1,解關(guān)于x的不等式.18.設(shè)兩個向量,,滿足,.(1)若,求、的夾角;(2)若、夾角為,向量與夾角為鈍角,求實數(shù)的取值范圍.19.設(shè)條件,條件(1)在條件q中,當時,求實數(shù)x的取值范圍.(2)若p是q的充分不必要條件,則實數(shù)m的取值范圍.20.已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的最大值和最小值及相應的的值.21.已知定義域為的函數(shù)是奇函數(shù)(1)求,的值;(2)用定義證明在上為減函數(shù);(3)若對于任意,不等式恒成立,求的范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】由題可得函數(shù)為減函數(shù),根據(jù)單調(diào)性可求解參數(shù)的范圍.【題目詳解】由題可得,函數(shù)為單調(diào)遞減函數(shù),當時,若單減,則對稱軸,得:,當時,若單減,則,在分界點處,應滿足,即,綜上:故選:B2、A【解題分析】利用任意角的三角函數(shù)的定義,即可求得的值【題目詳解】角的頂點為坐標原點,始邊為軸正半軸,終邊過點.由三角函數(shù)的定義有:.故選:A3、B【解題分析】寫出命題p,q的否定命題,由題意得否定命題為真命題,解不等式,即可得答案.【題目詳解】因為命題p為假命題,則命題p的否定為真命題,即:為真命題,解得,同理命題q為假命題,則命題q的否定為真命題,即為真命題,所以,解得或,綜上:,故選:B【題目點撥】本題考查命題的否定,存在量詞命題與全程量詞命題的否定關(guān)系,考查分析理解,推理判斷的能力,屬基礎(chǔ)題.4、D【解題分析】選項,連接,,因為,所以直線與直線所成的角為,故錯;選項,因為平面,故為直線與平面所成的角,根據(jù)題意;選項,因為平面,所以,故二面角的平面角為,故錯;用排除法,選故選:D5、B【解題分析】先分析函數(shù)的單調(diào)性,進而結(jié)合零點存在定理,可得函數(shù)在區(qū)間上有一個零點【題目詳解】解:函數(shù)在上為增函數(shù),又(1),(2),函數(shù)在區(qū)間上有一個零點,故選:6、C【解題分析】根據(jù)含有一個量詞的命題的否定形式,全稱命題的否定是特稱命題,可得答案.【題目詳解】命題:“,”是全稱命題,它的否定是特稱命題:,,故選:C7、C【解題分析】根據(jù)零點存在定理得出,代入可得選項.【題目詳解】由題可知:函數(shù)單調(diào)遞增,若一個零點在區(qū)間內(nèi),則需:,即,解得,故選:C.【題目點撥】本題考查零點存在定理,屬于基礎(chǔ)題.8、B【解題分析】由根的判別式列出不等關(guān)系,求出實數(shù)a的取值范圍.【題目詳解】“,方程有解”是真命題,故,解得:,故選:B9、C【解題分析】判斷與大小關(guān)系,即可得到答案.【題目詳解】因為,,,所以.故選:C.【題目點撥】本題主要考查對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),關(guān)鍵是與中間量進行比較,然后得三個數(shù)的大小關(guān)系,屬于基礎(chǔ)題.10、A【解題分析】根據(jù)函數(shù)的定義域,函數(shù)的奇偶性,函數(shù)值的符號及函數(shù)的零點即可判斷出選項.【題目詳解】當時,令,得或,且時,;時,,故排除選項B.因為為偶函數(shù),為奇函數(shù),所以為奇函數(shù),故排除選項C;因為時,函數(shù)無意義,故排除選項D;故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】∵扇形的圓心角為,半徑為,∴扇形的面積故答案為12、【解題分析】由題意得,函數(shù)是增函數(shù),構(gòu)造出方程組,利用方程組的解都大于0,求出t的取值范圍.【題目詳解】因為函數(shù)為“倍縮函數(shù)”,即滿足存在,使在上的值域是,由復合函數(shù)單調(diào)性可知函數(shù)在上是增函數(shù)所以,則,即所以方程有兩個不等實根,且兩根都大于0.令,則,所以方程變?yōu)椋?則,解得所以實數(shù)的取值范圍是.故答案為:13、【解題分析】由二次函數(shù)的知識得,當時有.令,則,.結(jié)合二次函數(shù)可得要滿足題意,只需,解不等式可得所求范圍【題目詳解】由已知可得,所以當時,取得最小值,且令,則,要使函數(shù)的最小值與函數(shù)的最小值相等,只需滿足,解得或.所以實數(shù)的取值范圍是故答案為【題目點撥】本題考查二次函數(shù)最值的問題,求解此類問題時要結(jié)合二次函數(shù)圖象,即拋物線的開口方向和對稱軸與區(qū)間的關(guān)系進行求解,同時注意數(shù)形結(jié)合在解題中的應用,考查分析問題和解決問題的能力,屬于基礎(chǔ)題14、4【解題分析】分析:直接利用基本不等式求xy的最大值.詳解:因為x+y=4,所以4≥,所以故答案為4.點睛:(1)本題主要考查基本不等式,意在考查學生對該基礎(chǔ)知識的掌握水平.(2)利用基本不等式求最值時,一定要注意“一正二定三相等”,三者缺一不可.15、【解題分析】根據(jù)三角函數(shù)的定義求出r即可.【題目詳解】角的終邊過點,,則,故答案為【題目點撥】本題主要考查三角函數(shù)值的計算,根據(jù)三角函數(shù)的定義是解決本題的關(guān)鍵.三角函數(shù)的定義將角的終邊上的點的坐標和角的三角函數(shù)值聯(lián)系到一起,.知道終邊上的點的坐標即可求出角的三角函數(shù)值,反之也能求點的坐標.16、【解題分析】先利用已知條件,結(jié)合圖象確定的取值范圍,設(shè),即得到是關(guān)于t的二次函數(shù),再求二次函數(shù)的取值范圍即可.【題目詳解】先作函數(shù)圖象如下:由圖可知,若,,設(shè),則,,由知,;由知,;故,,故時,最小值為,時,最大值為,故的取值范圍是.故答案為:.【題目點撥】本題解題關(guān)鍵是數(shù)形結(jié)合,通過圖象判斷的取值范圍,才能分別找到與相等函數(shù)值t的關(guān)系,構(gòu)建函數(shù)求值域來突破難點.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)0;(2){x|x>1}【解題分析】(1)根據(jù)指數(shù)冪的運算性質(zhì),化簡求值;(2)利用指數(shù)函數(shù)的單調(diào)性,即可求解不等式.【題目詳解】(1)原式(2)因為0<a<1,所以y=ax在(-∞,+∞)上為減函數(shù),因為,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集為{x|x>1}.18、(1);(2)且.【解題分析】(1)根據(jù)數(shù)量積運算以及結(jié)果,結(jié)合模長,即可求得,再根據(jù)數(shù)量積求得夾角;(2)根據(jù)夾角為鈍角則數(shù)量積為負數(shù),求得的范圍;再排除向量與不為反向向量對應參數(shù)的范圍,則問題得解.【題目詳解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夾角是.(2)因為向量與的夾角為鈍角,所以,且向量與不反向共線,即,又、夾角為,所以,所以,解得,又向量與不反向共線,所以,解得,所以的取值范圍是且.【題目點撥】本題考查利用數(shù)量積求向量夾角,以及由夾角范圍求參數(shù)范圍,屬綜合基礎(chǔ)題.19、(1)(2)【解題分析】(1)將代入,整理得,求解一元二次不等式即可;(2)由題可知條件為,是的子集,列不等式組即可求解.【小問1詳解】解:當時,條件,即,解得,故的取值范圍為:.【小問2詳解】解:由題知,條件,條件,即,∵是的充分不必要條件,故是的子集,∴,解得,故實數(shù)m的取值范圍為.20、(1),(2)時,,時,.【解題分析】(1)將函數(shù)化簡得,可求函數(shù)的最小正周期;(2)由求出,進而求出函數(shù)在區(qū)間上的最大值和最小值及相應的的值.【小問1詳解】所以.【小問2詳解】因為,所以,所以,所以,當時,即,,當時,即,.21、(1),;(2)證明見解析;(3).【解題分析】(1)根據(jù)奇函數(shù)定義,利用且,列出關(guān)于、的方程組并解之得;(2)根據(jù)函數(shù)單調(diào)性的定義,任取實數(shù)、,通過作差因式分解可證出:當時,,即得函數(shù)在上為減函數(shù);(3)根據(jù)函數(shù)的單調(diào)性和奇偶性,將不等式轉(zhuǎn)化為:對任意的都成立,結(jié)合二次函數(shù)的圖象與性質(zhì),可得的取值范圍【題目詳解】解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論