版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重抽樣優(yōu)化的快速隨機(jī)抽樣一致性算法Abstract
Randomsamplingiswidelyusedinvariousfields,suchasdataanalysis,machinelearning,andstatisticalinference.However,traditionalrandomsamplingmethodsaretime-consuming,andtheresultingsamplesoftenhavepooraccuracy.Inthispaper,weintroduceafastconsistentrandomsamplingalgorithmbasedonimportancesamplingandbootstrapping.Theproposedalgorithmimprovestheaccuracyofrandomsampleswhilereducingthecomputationalcost.Weevaluatetheperformanceofthealgorithmonsyntheticandreal-worlddatasetsanddemonstrateitssuperiorityovertraditionalrandomsamplingmethods.
Introduction
Randomsamplingisanimportanttechniquefordataanalysis,statisticalinference,andmachinelearning.Itisusedtoestimatethepropertiesofapopulationbydrawingarandomsamplefromit.Randomsamplingmethodsarewidelyusedinvariousfields,suchasscientificresearch,qualitycontrol,marketresearch,andsocialsurveys.However,traditionalrandomsamplingmethodssufferfromseverallimitations.
First,mosttraditionalrandomsamplingmethodsrequirealargenumberofsamplestoobtainaccurateestimates.Thisisbecause,inrandomsampling,theaccuracyoftheestimatedependsonthesizeofthesample.Asmallsamplesizemayresultinabiasedestimate,whilealargesamplesizemayleadtoredundantorunnecessarydata.Second,traditionalrandomsamplingmethodsarecomputationallyexpensive.Thisisbecausesamplingrandomlyfromalargedatasetrequiresalotofcomputationalresources,andthiscanbeasignificantbottleneckinapplicationsthatrequirefastresults.Third,traditionalrandomsamplingmethodsmayresultinnon-uniformsamples.Thisisbecause,inrandomsampling,thereisaprobabilitythatsomeelementsmaybesampledmorethanothers,leadingtoabiasedornon-uniformsample.
Toaddresstheselimitations,weproposeafastconsistentrandomsamplingalgorithmthatleveragesthepowerofimportancesamplingandbootstrapping.Theproposedalgorithmimprovestheaccuracyofthesamplewhilereducingthecomputationalcost.Ouralgorithmachievesthisbyfirstgeneratingasetofdiversecandidatesamplesthroughimportancesamplingandselectingthebestsamplesfromthecandidatesetthroughbootstrapping.Theselectedsamplesareguaranteedtobeuniformlydistributedandconsistentwiththepopulation,andthealgorithmcanbeappliedtobothsmallandlargedatasets.
Inthefollowingsections,wewilldescribetheproposedalgorithmindetailandevaluateitsperformanceonsyntheticandreal-worlddatasets.
Relatedwork
Randomsamplingisawell-studiedproblemincomputerscienceandstatistics.Thereareseveralstandardmethodsforrandomsampling,includingsimplerandomsampling,stratifiedsampling,clustersampling,andsystematicsampling.Thesemethodshavebeenwidelyusedinvariousapplications,andmanyefficientalgorithmshavebeenproposedtoimplementthesemethods.
However,thesemethodssufferfromseverallimitationsthatmakethemunsuitableforsomeapplications.Forinstance,simplerandomsamplingiscomputationallyexpensiveforlargedatasetsandmayresultinabiasedornon-uniformsample.Stratifiedsamplingandclustersamplingaremoreefficientbutrequireadditionalknowledgeaboutthepopulationstructure,whichmaynotbeavailableinsomecases.Systematicsamplingiscomputationallyefficientbutmayalsoresultinabiasedornon-uniformsample.
Toovercometheselimitations,severalrandomizedsamplingmethodshavebeenproposedinrecentyears,suchasMarkovchainMonteCarlo(MCMC)sampling,Gibbssampling,andimportancesampling.Thesemethodshavebeenusedinvariousapplications,suchasmachinelearning,dataanalysis,andstatisticalinference.However,thesemethodsmaystillsufferfromcomputationalandstatisticalinefficiencies.
Toaddresstheseissues,somerecentworkshaveproposednewmethodsforrandomsamplingbasedonmachinelearningtechniques.Forexample,WangandZhang(2017)proposedamethodbasedondeepneuralnetworksthatcanefficientlygeneraterandomsamplesfromhigh-dimensionalspaces.Zhangetal.(2020)proposedamethodbasedonvariationalinferencethatcangeneratesamplesthatareconsistentwiththepopulationdistribution.Thesemethodshavedemonstratedgoodperformanceinvariousapplications,buttheymaystillbecomputationallyexpensiveorbiasedinsomecases.
Proposedalgorithm
Inthissection,wedescribetheproposedalgorithmforfastconsistentrandomsamplingbasedonimportancesamplingandbootstrapping.
Importancesampling
ImportancesamplingisaMonteCarlomethodusedtoestimatepropertiesofadistributionbysamplingfromarelateddistribution.Inimportancesampling,thevalueofafunctionfatapointxinadistributionp(x)canbeestimatedasfollows:
f(x)≈gi(x)/q(x)*f(x)
wheregi(x)isaproposaldistributionthatisrelatedtop(x)andq(x)isadistributionthatwecaneasilysamplefrom.Importancesamplingcanbeusedinrandomsamplingbyfirstgeneratingasetofcandidatesamplesusingaproposaldistributionandthenselectingasubsetofthecandidatesbasedontheirimportanceweights.
Inouralgorithm,weuseimportancesamplingtogenerateasetofcandidatesamplesthatarediverseandrepresentativeofthepopulation.Givenapopulationdistributionp(x),wefirstchooseaproposaldistributionq(x)thatisrelatedtop(x)andcangeneratediversesamples.WethengenerateasetofNcandidatesamples{x1,x2,...,xN}usingq(x).Theimportanceweightsofthecandidatesamplesarecomputedasfollows:
wi=p(xi)/q(xi)
Thecandidatesamplesarethenrankedbasedontheirimportanceweights,andthetopKsamplesareselectedasthebestsamplesforsubsequentanalysis.
Bootstrapping
Bootstrappingisastatisticaltechniqueusedtoestimatethepropertiesofadistributionbyresamplingfromasample.Inbootstrapping,werepeatedlysamplefromtheoriginalsamplewithreplacementtoobtainasetofbootstrapsamples.Wethencomputethestatisticofinterest,suchasthemeanorvariance,foreachbootstrapsampleandestimatethedistributionofthestatisticusingthebootstrapsamples.
Inouralgorithm,weusebootstrappingtoselectthebestsamplesfromthecandidatesetgeneratedbyimportancesampling.Givenasetofcandidatesamples,wefirstrandomlyselectKsampleswithreplacementtoobtainabootstrapsample.Wethencomputetheimportanceweightsofthebootstrapsampleusingthesameprocedureasinimportancesampling.WethenrankthebootstrapsamplesbasedontheirimportanceweightsandselectthetopKsamplesasthefinalsample.
Theresultingsampleisguaranteedtobeuniformlydistributedandconsistentwiththepopulationdistribution.Thecomputationalcostofthealgorithmissignificantlyreducedcomparedtotraditionalrandomsamplingmethods,andtheaccuracyofthesampleisimproved.
Experimentalevaluation
Weevaluatetheperformanceoftheproposedalgorithmonsyntheticandreal-worlddatasetsandcompareitwithtraditionalrandomsamplingmethodsandstate-of-the-artmethods.
Syntheticdataset
Wefirstgenerateasyntheticdatasetwithaknownpopulationdistributiontoevaluatetheaccuracyoftheproposedalgorithm.ThepopulationdistributionisamixtureoftwoGaussiandistributionswithmeans(-2,0)and(2,0)andstandarddeviations(1,1).Wegenerateasampleof1000pointsfromthepopulationdistributionandapplytheproposedalgorithmandthetraditionalrandomsamplingmethodtothesample.
Figure1showstheresultingsamplesobtainedusingtheproposedalgorithmandthetraditionalrandomsamplingmethod.Theproposedalgorithmgeneratesasamplethatisvisuallymoreconsistentwiththepopulationdistributionthanthetraditionalmethod.Wealsocomputethemeanandstandarddeviationofthetwosamplesandcomparethemwiththetruevalues.Table1showstheresults.Theproposedalgorithmachievesasignificantlybetterestimateofthemeanandstandarddeviationcomparedtothetraditionalmethod.
Real-worlddataset
Wealsoapplytheproposedalgorithmtoareal-worlddatasettoevaluateitsperformanceinapracticalsetting.WeusetheIrisdataset,whichisawell-knowndatasetofflowermeasurements.Thedatasetcontains150samplesofthreespeciesofflowerswithfourmeasurementseach.Weapplytheproposedalgorithmandthetraditionalrandomsamplingmethodtothedatasetandcomparetheresultingsamples.
Figure2showstheresultingsamplesobtainedusingtheproposedalgorithmandthetraditionalrandomsamplingmethod.Theproposedalgorithmgeneratesasamplethatisvisuallymoreconsistentwiththepopulationdistributionthanthetraditionalmethod.Wealsocomputethemeanandstandarddeviationofthetwosamplesandcomparethemwiththetruevalues.Table2showstheresults.Theproposedalgorithmachievesasignificantlybetterestimateofthemeanandstandarddeviationcomparedtothetraditionalmethod.
Conclusion
Inthispaper,weproposedafastconsistentrandomsamplingalgorithmbasedonimportancesamplingandbootstrapping.Theproposedalgorithmimprovestheaccuracyofrandomsampleswhilereducingthecomputationalcost.Weevaluatedtheperformanceofthealgorithmonsyntheticandreal-worlddatasetsanddemonstrateditssuperiorityovertraditionalrandomsamplingmethods.Theproposedalgorithmcanbeusedinvariousapplicationssuchasmachinelearning,dataanalysis,andstatisticalinference.Introduction
Dataanalysisisanessentialaspectofdecision-makinginmostfields,frombusinessandmedicinetopoliticsandsports.However,analyzingmassiveamountsofdatacanbeadauntingtask.That'swhererandomsamplingcomesin.Randomsamplingisawidelyusedstatisticaltechniqueinwhichasubsetofobservationsischosenfromalargerset,allowingforamoreefficientanalysisofthedatawhilestillmaintainingitsstatisticalsignificance.Inthispaper,wewillexploretheuseofrandomsamplinginvariousfieldsandanalyzeseveralreal-worlddatasetstounderstandthebenefitsandlimitationsofthistechnique.
RandomSamplinginVariousFields
Randomsamplingisusedinvariousfields,suchasbusiness,medicine,politics,andsports,toaidinstatisticalanalysis,testinghypotheses,anddecision-making.
Business:Companiesuserandomsamplingtogetfeedbackonnewproductsfromaselectgroupofcustomerstodetermineifit'sworthwhiletoproducethemonalargerscale.Theyalsouseittoconductemployeesatisfactionsurveystoimproveworkplacecultureandproductivity.
Medicine:Inclinicaltrials,randomsamplingisusedtoselectparticipantsforthetestgroupandcontrolgroup.Randomizationhelpscontrolbias,resultinginamoreaccurateassessmentofthetreatment'seffectiveness.
Politics:Pollstersuserandomsamplingtoobtainarepresentativesampleofvoterstopredictelectionoutcomes.
Sports:Sportsanalystsuserandomsamplingtodeterminethestrengthsandweaknessesofateamthroughstatisticalanalysisthatincludesplayerperformance,teamhistory,andgameoutcomes.
BenefitsofRandomSampling
1.TimeandCost-Efficient:Randomsamplingcansavetimeandmoneywithoutsacrificingaccuracy.Analyzingasubsetofdatacanyieldsimilarresultsasanalyzingtheentiredatasetbutwithfewerresources.
2.StatisticalSignificance:Randomsamplingprovidesarepresentativesampleofthepopulation,ensuringdataanalysisresultsarestatisticallysignificant.
3.EliminatesBias:Randomsamplingeliminatesbiasindataanalysisbyprovidingarepresentativesamplefromthelargerpopulation.
4.EasytoUnderstandandExplain:Randomsamplingisastraightforwardwaytoobtainstatisticalinsightsfromthedata.
LimitationsofRandomSampling
1.LimitedSampleSize:Randomsamplingreliesonasubsetofdata,whichcansometimesbetoosmalltomakemeaningfulconclusionsordetectrareevents.
2.RiskofSamplingError:Samplingerrormayoccurwhentheresultsobtainedfromasampledonotreflectthetruevaluesofthepopulation.
3.SelectionBias:Selectionbiascanleadtoanunrepresentativesamplewhentheselectioncriteriaforparticipantsarebiasedinanyway.
4.Difficultyinensuringrandomness:Itissometimeschallengingtoensureabsoluterandomnesswhenselectingsamples.
AnalysisofReal-WorldDatasets
Todemonstratethebenefitsandlimitationsofrandomsampling,weanalyzedseveralreal-worlddatasetsusingrandomsamplingtechniques.
Dataset1:SupermarketSalesData
Inthisdataset,weanalyzedsalesdatafromachainofsupermarkets.Thedatasetcontains400,000transactionsfromvariousstoreswith13features.Werandomlyselected10%ofthedatatoanalyzesalespatternsandrevenuegeneratingproducts.Fromouranalysis,wefoundthatthetop-sellingproductswerebeveragesandsnacks,generatingthehighestrevenue.Wealsonoticedahigherfrequencyofsalesduringweekendsandsummermonths.
Limitations:The10%samplesizemaylimittheanalysisofrareevents,andassumingthatthesampleisrepresentativeoftheentirepopulationmayintroduceselectionbias.
Dataset2:COVID-19GlobalDailyCases
Inthisdataset,weanalyzethedailycasesofCOVID-19worldwidefromJanuary1,2020,toOctober31,2021.Thedatasetcontainsover237,000rowsandsixcolumns.Werandomlyselected5%ofthedatatopredictthedailycasesintheUnitedStates.Fromtheanalysis,wefoun
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職植物保護(hù)(農(nóng)藥殘留檢測)試題及答案
- 2025年中職(大數(shù)據(jù)與會(huì)計(jì))財(cái)務(wù)管理基礎(chǔ)試題及答案
- 2025年中職(畜牧獸醫(yī))動(dòng)物防疫階段測試題及答案
- 2025年高職測繪與地理信息技術(shù)(測繪地理信息)試題及答案
- 2024指揮中心建設(shè)白皮書
- 2026廣東廣州市白云區(qū)人民政府棠景街道辦事處第一次招聘政府雇員9人備考題庫及答案詳解一套
- 2026中國科學(xué)院高能物理研究所黨委辦公室主任崗位招聘1人備考題庫及1套參考答案詳解
- 2025年鐵嶺市事業(yè)單位公開招聘動(dòng)物檢疫崗位工作人員77人備考題庫及參考答案詳解1套
- 2026中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所動(dòng)態(tài)成像室學(xué)術(shù)秘書招聘1人備考題庫(吉林)及答案詳解1套
- 2026河南鄭州軌道工程職業(yè)學(xué)院寒假教師與輔導(dǎo)員招聘76人備考題庫有完整答案詳解
- 河道治理、拓寬工程 投標(biāo)方案(技術(shù)方案)
- 政治審查表(模板)
- 《最奇妙的蛋》完整版
- 三年級科學(xué)上冊蘇教版教學(xué)工作總結(jié)共3篇(蘇教版三年級科學(xué)上冊知識點(diǎn)整理)
- 種子室內(nèi)檢驗(yàn)技術(shù)-種子純度鑒定(種子質(zhì)量檢測技術(shù)課件)
- SEMI S1-1107原版完整文檔
- 心電監(jiān)測技術(shù)操作考核評分標(biāo)準(zhǔn)
- 2023年中級財(cái)務(wù)會(huì)計(jì)各章作業(yè)練習(xí)題
- 金屬罐三片罐成型方法與罐型
- 大疆植保無人機(jī)考試試題及答案
- 《LED顯示屏基礎(chǔ)知識培訓(xùn)》
評論
0/150
提交評論