版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆浙江省湖州三縣高三3月月考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.2.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線(xiàn)相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.4.已知雙曲線(xiàn)的一條漸近線(xiàn)方程為,,分別是雙曲線(xiàn)C的左、右焦點(diǎn),點(diǎn)P在雙曲線(xiàn)C上,且,則()A.9 B.5 C.2或9 D.1或55.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.6.已知函數(shù),其中,記函數(shù)滿(mǎn)足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.已知雙曲線(xiàn)(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線(xiàn)l與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則此雙曲線(xiàn)的離心率e的取值范圍是()A. B.(1,2), C. D.8.已知命題,,則是()A., B.,.C., D.,.9.若復(fù)數(shù)滿(mǎn)足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.510.在鈍角中,角所對(duì)的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.11.已知且,函數(shù),若,則()A.2 B. C. D.12.已知命題若,則,則下列說(shuō)法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則實(shí)數(shù)的值是__________.14.若復(fù)數(shù)(是虛數(shù)單位),則________15.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.16.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.18.(12分)已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.19.(12分)已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿(mǎn)足a3a5=45,a2+a6=1.(I)求{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}滿(mǎn)足:…,求{bn}的前n項(xiàng)和.20.(12分)在銳角中,,,分別是角,,所對(duì)的邊,的面積,且滿(mǎn)足,則的取值范圍是()A. B. C. D.21.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線(xiàn)與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.22.(10分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.2、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B?!军c(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。3、A【解析】
根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線(xiàn)與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.4、B【解析】
根據(jù)漸近線(xiàn)方程求得,再利用雙曲線(xiàn)定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線(xiàn)方程求雙曲線(xiàn)方程,涉及雙曲線(xiàn)的定義,屬基礎(chǔ)題.5、B【解析】
采用排除法:通過(guò)判斷函數(shù)的奇偶性排除選項(xiàng)A;通過(guò)判斷特殊點(diǎn)的函數(shù)值符號(hào)排除選項(xiàng)D和選項(xiàng)C即可求解.【詳解】對(duì)于選項(xiàng)A:由題意知,函數(shù)的定義域?yàn)椋潢P(guān)于原點(diǎn)對(duì)稱(chēng),因?yàn)?所以函數(shù)為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故選A排除;對(duì)于選項(xiàng)D:因?yàn)?故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;故選:B【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和特殊點(diǎn)函數(shù)值符號(hào)判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點(diǎn)并判斷其函數(shù)值符號(hào)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.6、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.7、A【解析】
若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線(xiàn)離心率的取值范圍.【詳解】已知雙曲線(xiàn)的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線(xiàn)的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.8、B【解析】
根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,得到結(jié)果.【詳解】根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.9、D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長(zhǎng).【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問(wèn)題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長(zhǎng)度的計(jì)算公式,是基礎(chǔ)題.10、B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗裕矗?,時(shí)故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.11、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.12、B【解析】
解不等式,可判斷A選項(xiàng)的正誤;寫(xiě)出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點(diǎn)睛:由向量的數(shù)乘和坐標(biāo)加減法運(yùn)算求得,然后利用向量共線(xiàn)的坐標(biāo)表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.14、【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【詳解】,.【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.15、4038.【解析】
由函數(shù)圖象的對(duì)稱(chēng)性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)又函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對(duì)稱(chēng)性來(lái)求值的問(wèn)題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對(duì)稱(chēng)中心,屬中檔題.16、【解析】
設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)見(jiàn)解析【解析】
(1)由絕對(duì)值三解不等式可得,所以當(dāng)時(shí),,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時(shí),,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時(shí),等號(hào)成立.∴.【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式及基本不等式的簡(jiǎn)單應(yīng)用,屬于中檔題.18、(1)(2)為減函數(shù),為增函數(shù).(3)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),求出切線(xiàn)方程,令得切線(xiàn)的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對(duì)求導(dǎo),得.因此.又因?yàn)?,所以曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因?yàn)椋詾闇p函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時(shí),,即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),,即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)?,所以,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.19、(I);(Ⅱ)【解析】
(Ⅰ)設(shè)等差數(shù)列的公差為,則依題設(shè).由,可得.由,得,可得.所以.可得.(Ⅱ)設(shè),則.即,可得,且.所以,可知.所以,所以數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.所以前項(xiàng)和.考點(diǎn):等差數(shù)列通項(xiàng)公式、用數(shù)列前項(xiàng)和求數(shù)列通項(xiàng)公式.20、A【解析】
由正弦定理化簡(jiǎn)得,解得,進(jìn)而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進(jìn)而化簡(jiǎn),即可求解.【詳解】由題意,在銳角中,滿(mǎn)足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.21、(1)①當(dāng)時(shí),在單調(diào)遞增,②當(dāng)時(shí),單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見(jiàn)解析【解析】
(1)先求解導(dǎo)函數(shù),然后對(duì)參數(shù)分類(lèi)討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時(shí),恒成立,則在單調(diào)遞增②當(dāng)時(shí),令得,解得,又,∴∴當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒(méi)有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點(diǎn)睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對(duì)于含參函數(shù)單調(diào)性的分析,可通過(guò)分析參數(shù)的臨界值,由此分類(lèi)討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.22、(1)證明見(jiàn)解析;(2).【解析】
(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)200萬(wàn)套智能電微壓鍋出口基地項(xiàng)目可行性研究報(bào)告模板-備案審批
- 執(zhí)業(yè)藥師資格證后期有哪些用途
- 2024-2025學(xué)年陜西省安康市高二下學(xué)期期中聯(lián)考?xì)v史試題(解析版)
- 2024-2025學(xué)年山東省青島市即墨區(qū)高三上學(xué)期1月期末考試歷史試題(解析版)
- 2024-2025學(xué)年江蘇省丹陽(yáng)市高一下學(xué)期期末質(zhì)量檢測(cè)歷史試題(解析版)
- 2026年電子商務(wù)運(yùn)營(yíng)專(zhuān)業(yè)資質(zhì)認(rèn)證聯(lián)考模擬試題
- 2026年醫(yī)藥代表專(zhuān)業(yè)知識(shí)認(rèn)證題目及解析
- 2026年心理咨詢(xún)師資格考試心理健康診斷題目解析
- 2026年編程開(kāi)發(fā)寶典Python語(yǔ)言基礎(chǔ)與進(jìn)階題庫(kù)
- 2026年心理健康教育與維護(hù)策略試題
- 2025年長(zhǎng)期護(hù)理保險(xiǎn)服務(wù)項(xiàng)目可行性研究報(bào)告
- 乙醇購(gòu)銷(xiāo)合同范本
- 2026年金屬冶煉公司金屬冶煉技術(shù)研發(fā)立項(xiàng)評(píng)審管理制度
- 醫(yī)保智能審核與醫(yī)院HIS系統(tǒng)融合方案
- 污水管網(wǎng)事故應(yīng)急處理方案
- 創(chuàng)傷護(hù)理新進(jìn)展與展望
- 2023-2025年浙江中考數(shù)學(xué)試題分類(lèi)匯編:圖形的性質(zhì)(解析版)
- 智慧園區(qū)能耗監(jiān)測(cè)系統(tǒng)定制開(kāi)發(fā)協(xié)議
- DB34∕T 4926-2024 新增耕地核定規(guī)程
- 健康險(xiǎn)精算模型的風(fēng)險(xiǎn)調(diào)整-洞察與解讀
- 桶裝蜂蜜采購(gòu)合同范本
評(píng)論
0/150
提交評(píng)論