版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年蘇科版數(shù)學(xué)九年級(jí)下冊(cè)易錯(cuò)題真題匯編(提高版)第7章《銳角三角函數(shù)》一.選擇題(共10小題,滿分20分,每小題2分)1.(2分)(2023春?黃渤海新區(qū)期中)﹣tan60°的倒數(shù)是()A.﹣ B. C.﹣ D.解:﹣tan60°的倒數(shù)=﹣=﹣,故選:C.2.(2分)(2023?儀征市模擬)如圖,?點(diǎn)A坐標(biāo)為(﹣2,1),點(diǎn)B坐標(biāo)為(0,4),將線段AB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)得到對(duì)應(yīng)線段A′B′,若點(diǎn)A′恰好落在x軸上,則∠B'A′O的正弦值為()A. B. C. D.解:如圖,連接OA,OB′,過(guò)點(diǎn)B′作B′H⊥x軸于點(diǎn)H,過(guò)點(diǎn)A作AT⊥OB于點(diǎn)T.∵點(diǎn)A坐標(biāo)為(﹣2,1),點(diǎn)B坐標(biāo)為(0,4),∴AT=2,OT=1,OB=4,∴OA==,BT=OB﹣OT=4﹣1=3.∴OA=OA′=,AB==.∵S△OA′B′=S△OAB=×4×2=4,∴OA'?B'H=4.∴B′H==.又A'B'=AB=,∴sin∠B'A′O===.故選:D.3.(2分)(2023?新華區(qū)校級(jí)模擬)題目:“如圖,∠MON=60°,點(diǎn)B在射線OM上,,射線OA在∠MON的內(nèi)部,∠AOM=45°,點(diǎn)P在射線OA上,且∠OBP=∠AON,Q是射線PA上的動(dòng)點(diǎn),當(dāng)△BPQ是鈍角三角形時(shí),求PQ的取值范圍.”對(duì)于其答案,甲答:0<PQ<2,乙答:2<PQ<8,丙答:PQ>8,則正確的是()A.只有乙答的對(duì) B.甲、丙答案合在一起才完整 C.乙、丙答案合在一起才完整 D.三人答案合在一起才完整解:∵∠OBP=∠AON,∴∠BPA=∠OBP+∠BOP=∠AON+∠BOP=∠MON=60°.①當(dāng)∠BQP為鈍角時(shí),如圖所示,過(guò)點(diǎn)B作BH⊥OA于點(diǎn)H,在Rt△OHB中,BH⊥OA,∠AOM=45°,則OH=BH==2.在Rt△PHB中,BH⊥OA,∠PBH=90°﹣∠BPA=30°,則PH==2,BP=2PH=4.由圖可知,當(dāng)點(diǎn)P在線段PH上時(shí),可滿足∠BQP為鈍角,∴0<PQ<2.②當(dāng)∠PBQ為鈍角時(shí),如圖所示,過(guò)點(diǎn)B作BE⊥BP交射線OA于點(diǎn)E,在Rt△PBE中,BE⊥BP,∠PEB=90°﹣∠BPA=30°,則PE=2BP=8.由圖可知,當(dāng)點(diǎn)Q在線段PE的延長(zhǎng)線上時(shí),可滿足∠PBQ為鈍角,∴PQ>8.綜上,0<PQ<2或PQ>8,則甲、丙答案合在一起才完整.故選:B.4.(2分)(2023?南關(guān)區(qū)校級(jí)模擬)如圖,為測(cè)量一幢大樓的高度,在地面上與樓底點(diǎn)O相距30米的點(diǎn)A處,測(cè)得樓頂B點(diǎn)的仰角∠OAB=65°,則這幢大樓的高度為()A.米 B.30sin65°米 C.米 D.30?tan65°米解:由題意得:BO⊥AO,AO=30米,在Rt△ABO中,∠BAO=65°,∴BO=AO?tan65°=30tan65°(米),故選:D.5.(2分)(2023?宿城區(qū)校級(jí)模擬)如圖,點(diǎn)A、B、C均在4x4的正方形網(wǎng)格的格點(diǎn)上,則tan∠BAC=()A. B. C. D.解:如圖,過(guò)點(diǎn)B作BD⊥AC,垂足為D.由格點(diǎn)三角形可知:AC==4,AB==2.∵S△ABC=×4×4﹣×4×2=8﹣4=4,S△ABC=AC?BD=×4×BD=2BD.∴2BD=4,∴BD=.∴AD===3.∴tan∠BAC===.故選:A.6.(2分)(2023?東港區(qū)校級(jí)二模)為出行方便,越來(lái)越多的日照市民使用起了共享單車(chē),圖1為單車(chē)實(shí)物圖,圖2為單車(chē)示意圖,AB與地面平行,點(diǎn)A、B、D共線,點(diǎn)D、F、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知∠ABE=70°,車(chē)輪半徑為20cm,當(dāng)BC=60cm時(shí),小明體驗(yàn)后覺(jué)得騎著比較舒適,此時(shí)坐墊C離地面高度約為()(結(jié)果精確到1cm,參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈1.41)A.80cm B.76cm C.72cm D.70cm解:過(guò)點(diǎn)C作CH⊥AB,垂足為H,在Rt△BCH中,∠ABE=70°,BC=60cm,∴CH=BC?sin70°≈60×0.94=56.4(cm),∵車(chē)輪半徑為20cm,∴此時(shí)坐墊C離地面高度=56.4+20≈76(cm),∴此時(shí)坐墊C離地面高度約為76cm,故選:B.7.(2分)(2023?思明區(qū)校級(jí)模擬)如圖,一座金字塔被發(fā)現(xiàn)時(shí),頂部已經(jīng)蕩然無(wú)存,但底部未受損.已知該金字塔的下底面是一個(gè)邊長(zhǎng)為140m的正方形,且每一個(gè)側(cè)面與地面成60°角,則金字塔原來(lái)高度為()A.140m B. C. D.解:如圖:∵該金字塔的下底面是一個(gè)邊長(zhǎng)為140m的正方形,∴BC=×140=70(m),∵AC⊥BC,∴∠ACB=90°,在Rt△ABC中,∠ABC=60°,∴AC=BC?tan60°=70(m),∴則金字塔原來(lái)高度為70m,故選:B.8.(2分)(2023?日照)日照燈塔是日照海濱港口城市的標(biāo)志性建筑之一,主要為日照近海及進(jìn)出日照港的船舶提供導(dǎo)航服務(wù).?dāng)?shù)學(xué)小組的同學(xué)要測(cè)量燈塔的高度,如圖所示,在點(diǎn)B處測(cè)得燈塔最高點(diǎn)A的仰角∠ABD=45°,再沿BD方向前進(jìn)至C處測(cè)得最高點(diǎn)A的仰角∠ACD=60°,BC=15.3m,則燈塔的高度AD大約是()(結(jié)果精確到1m,參考數(shù)據(jù):≈1.41,≈1.73)A.31m B.36m C.42m D.53m解:由題意得:AD⊥BD,設(shè)CD=xm,∵BC=15.3m,∴BD=BC+CD=(x+15.3)m,在Rt△ABD中,∠ABD=45°,∴AD=BD?tan45°=(x+15.3)m,在Rt△ACD中,∠ACD=60°,∴AD=CD?tan60°=x(m),∴x=(x+15.3),解得:x≈21.0,∴AD=x+15.3≈36(m),∴燈塔的高度AD大約是36m,故選:B.9.(2分)(2023?泰山區(qū)校級(jí)三模)某通信公司準(zhǔn)備逐步在歌樂(lè)山上建設(shè)5G基站.如圖,某處斜坡CB的坡度(或坡比)為i=1:2.4,通訊塔AB垂直于水平地面,在C處測(cè)得塔頂A的仰角為45°,在D處測(cè)得塔頂A的仰角為53°,斜坡路段CD長(zhǎng)26米,則通訊塔AB的高度為()(參考數(shù)據(jù):,,)A.米 B.米 C.56米 D.66米如圖,延長(zhǎng)AB與水平線交于F,過(guò)D作DM⊥CF,M為垂足,過(guò)D作DE⊥AF,E為垂足,連接AC,AD,∵斜坡CB的坡度為i=1:2.4,∴==,設(shè)DM=5k米,則CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度為i=1:2.4,設(shè)DE=12a米,則BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高為米.故選:B.10.(2分)(2023?無(wú)錫二模)如圖,在△BDE中,∠BDE=90°,,點(diǎn)D的坐標(biāo)是(4,0),tan∠BDO=,將△BDE旋轉(zhuǎn)到△ABC的位置,點(diǎn)C在BD上,則旋轉(zhuǎn)中心的坐標(biāo)為()?A. B. C. D.解:如圖,連接AD,取AD的中點(diǎn)O′,連接O′B,O′C,O′E,過(guò)點(diǎn)B作x軸的垂線交x軸于N,與過(guò)點(diǎn)A作y軸的垂線相交于點(diǎn)M,由旋轉(zhuǎn)可知,BD=AB=4,∠ABC=∠BDE=90°,∠BAC=∠DBE,∴AD==8,∵點(diǎn)O′是AD的中點(diǎn),∴O′A=O′B=O′D=AD=4,∴點(diǎn)O′是點(diǎn)A、點(diǎn)B的旋轉(zhuǎn)中心,點(diǎn)O′也是點(diǎn)D、點(diǎn)B的旋轉(zhuǎn)中心,∵∠O′AC+∠BAC=45°=∠O′BE+∠DBE,∴∠O′AC=∠O′BE,又∵O′A=O′B,AC=BE,∴△O′AC≌△O′BE(SAS),∴O′C=O′E,∴點(diǎn)O′是點(diǎn)E、點(diǎn)C的旋轉(zhuǎn)中心,因此點(diǎn)O′是△BDE旋轉(zhuǎn)到△ABC的旋轉(zhuǎn)中心,∵∠DBN+∠ABM=180°﹣90°=90°,∠DBN+∠BDN=90°,∴∠ABM=∠BDN,∵∠BND=∠AMB=90°,AB=DB,∴△ABM≌△BDN(AAS),∴AM=BN,BM=DN,在Rt△BDN中,由于tan∠BDN==,設(shè)BN=x,則DN=3x,由勾股定理得,BN2+DN2=BD2,即x2+(3x)2=(4)2,解得x=(取正值),即BN=AM=,∴DN=BM=3BN=,∴O′N(xiāo)=4﹣=,∴MN=BN+MB=+=,∴點(diǎn)A(,)∵點(diǎn)D(4,0)∴AD中點(diǎn)O′的坐標(biāo)為(,),故選:D.二.填空題(共10小題,滿分20分,每小題2分)11.(2分)(2023?邗江區(qū)校級(jí)模擬)如圖,在Rt△ABC中,∠C=90o,AC=BC=6,點(diǎn)D、E、F分別在AC、BC、AB邊上,且DE⊥EF,tan∠EDC=2,則△DEF的面積最大值.解:由tan∠EDC=2,設(shè)CD=x,∴CE=2x.∴DE=x.如圖,作FH⊥BE,垂足為H,設(shè)EH=y(tǒng),∵DE⊥EF,∠C=90o,∴∠FEH+∠DEC=90°,∠EDC+∠DEC=90°.∴∠FEH=∠EDC.∴tan∠FEH=tan∠EDC=2.∴FH=2y.∴EF=y(tǒng).∵∠FHB=90°,∠B=45°,∴FH=BH=2y.∵CE+EH+BH=BC=6,∴2x+y+2y=6.∴y=2﹣x.∴S△DEF==﹣(x﹣)2+.∴當(dāng)x=時(shí),△DEF的面積有最大值為.故答案為:.12.(2分)(2023?咸寧三模)如圖,某數(shù)學(xué)興趣小組測(cè)量一棵樹(shù)CD的高度,在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為45°,在點(diǎn)B處測(cè)得樹(shù)頂C的仰角為60°,且A,B,D三點(diǎn)在同一直線上,若AB=20m,則這棵樹(shù)CD的高度約為12.7m.(按四舍五入法將結(jié)果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):)解:由題意得:CD⊥AB,設(shè)BD=x米,在Rt△BDC中,∠CBD=60°,∴CD=BD?tan60°=x(米),在Rt△ACD中,∠CAD=45°,∴AD==x(米),∵AD+BD=AB,∴x+x=20,∴x=10﹣10,∴CD=x=30﹣10≈12.7(米),∴這棵樹(shù)CD的高度約為12.7米,故答案為:12.7.13.(2分)(2023?清遠(yuǎn)一模)圖①是一輛吊車(chē)的實(shí)物圖,圖②是其工作示意圖,AC是可以伸縮的起重臂,共轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)AC=9m,∠HAC=118°時(shí),則操作平臺(tái)C離地面的高度為7.6m.(結(jié)果精確到0.1米)【參考數(shù)據(jù):sin28°=0.47,cos28°=0.88,tan28°=0.53】解:如圖,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)A作AF⊥CE于點(diǎn)F則四邊形AHEF為矩形,∴EF=AH=3.4,∠HAF=90°,∵∠CAF=∠CAH﹣∠HAF=28°,在Rt△AFC中,sin∠ACF=,∴CF=AC?sin∠CAF=9×0.47≈4.23(m),∴CE=CF+FE≈7.6(m);故答案為:7.6m.14.(2分)(2023?南山區(qū)二模)“灣區(qū)之光”摩天輪位于深圳市華僑城歡樂(lè)港灣內(nèi),是深圳地標(biāo)性建筑之一,摩天輪采用了世界首創(chuàng)的魚(yú)鰭狀異形大立架,有28個(gè)進(jìn)口轎廂,每個(gè)轎廂可容納25人.小亮在轎廂B處看摩天輪的圓心O處的仰角為30°,看地面A處的俯角為45°(如圖所示,OA垂直于地面),若摩天輪的半徑為54米,則此時(shí)小亮到地面的距離BC為27米.(結(jié)果保留根號(hào))解:過(guò)點(diǎn)B作BD⊥OA,垂足為D,則AD=BC,在Rt△ODB中,∠OBD=30°,OB=54米,∴OD=OB=27(米),DB=OD=27(米),在Rt△ADB中,∠ABD=45°,∴AD=DB?tan45°=27(米),∴AD=BC=27米,∴小亮到地面的距離BC為27米,故答案為:27.15.(2分)(2023?洪山區(qū)模擬)如圖,為了測(cè)量河寬CD,先在A處測(cè)得對(duì)岸C點(diǎn)在其北偏東30°方向,然后沿河岸直行到點(diǎn)B,在B點(diǎn)測(cè)得對(duì)岸C點(diǎn)在其北偏西45°方向,經(jīng)過(guò)計(jì)算河寬CD是30米,則從A點(diǎn)到B點(diǎn)的距離為米.(結(jié)果保留根號(hào))解:由題意得:CD⊥AB,在Rt△ACD中,∠CAD=90°﹣30°=60°,CD=30米,∴AD===10(米),在Rt△CDB中,∠CBD=90°﹣45°=45°,∴BD==30(米),∴AB=AD+BD=(10+30)米,∴從A點(diǎn)到B點(diǎn)的距離為(10+30)米,故答案為:.16.(2分)(2023?江漢區(qū)二模)如圖,摩托車(chē)的大燈射出的光線AB、AC與地面MN的夾角分別為8°和10°,該大燈照亮地面的寬度BC的長(zhǎng)為1.4米,則該大燈距地面的高度是0.88米,(結(jié)果精確到0.01米,參考數(shù)據(jù)sin8°≈0.13,tan8°≈0.14,sin10°≈0.17,tan10°≈0.18)?解:如圖:過(guò)點(diǎn)A作AD⊥MN,垂足為D,設(shè)CD=x米,∵BC=1.4米,∴BD=CD+BC=(x+1.4)米,在Rt△ADC中,∠ACD=10°,∴AD=CD?tan10°≈0.18x(米),在Rt△ADB中,∠ABD=8°,∴AD=BD?tan8°≈0.14(x+1.4)米,∴0.18x=0.14(x+1.4),解得:x=4.9,∴AD=0.18x≈0.88(米),∴該大燈距地面的高度約為0.88米,故答案為:0.88.17.(2分)(2023?興慶區(qū)校級(jí)四模)如圖,在某居民樓AB的正前方8m處有一生活超市CD,在生活超市的頂端C處,測(cè)得居民樓端A的仰角為67°,測(cè)得居民樓底端B的俯角為22°,則居民樓AB的高度約為22.1m.(結(jié)果保留小數(shù)點(diǎn)后一位)(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)解:過(guò)點(diǎn)C作CE⊥AB,垂足為E,由題意得:CE=BD=8m,在Rt△AEC中,∠ACE=67°,∴AE=CE?tan67°≈8×2.36=18.88(m),在Rt△BCE中,∠BCE=22°,∴BE=CE?tan22°≈8×0.4=3.2(m),∴AB=AE+BE=18.88+3.2≈22.1(m),∴則居民樓AB的高度約為22.1m,故答案為:22.1.18.(2分)(2023?甌海區(qū)四模)如圖1是一款便攜式拉桿車(chē),其側(cè)面示意圖如圖2所示,前輪⊙O的直徑為12cm,拖盤(pán)OE與后輪⊙O'相切于點(diǎn)N,手柄OF⊥OE.側(cè)面為矩形ABCD的貨物置于拖盤(pán)上,AB=20cm,BC=52cm.如圖3所示,傾斜一定角度拉車(chē)時(shí),貨物繞點(diǎn)B旋轉(zhuǎn),點(diǎn)C落在OF上,若,則OC的長(zhǎng)為10cm,同一時(shí)刻,點(diǎn)C離地面高度h=56cm,則點(diǎn)A離地面高度為cm.解:∵∠ABC=∠COE=90°,∴∠OBC+∠OCB=90°=∠OBC+∠ABE,∴∠OCB=∠ABE,∴tan∠OCB=tan∠ABE=,在Rt△COB中,,設(shè)OB=x,則OC=5x,在Rt△COB中,由勾股定理得:BC2=OB2+OC2x2+(5x)2﹣522,解得x=2,∵OC=10cm,如圖所示,過(guò)點(diǎn)O作OG⊥FQ于G,過(guò)點(diǎn)A作AH⊥FQ于H,過(guò)點(diǎn)A作AP垂直于水平面于P,在OC上取一點(diǎn)T,使得BT=CT,連接BT,設(shè)AH、BC交于S,則四邊形APQH是矩形,∴AP=QH,前輪⊙O的直徑為12cm,∴QG=6cm,∴CG=CQ﹣QG=50cm,,∴∠OCG=∠OCB,即∠BCG=2∠OCB,∵BT=CT,∴∠TBC=∠TCB,∴∠BTO=∠TBC+∠TCB=2∠TCB=∠BCG,設(shè)CT=BT=xcm,則,在Rt△OBT中,由勾股定理得BT2=OB2+OT2,,解得,∴,,∵∠ASB=∠CSH,∠ABS=∠CHS=90°,∴∠SAB=∠SCH,∴tan∠SAB=tan∠SCH,在Rt△ABS中,,,CH=CS?cos∠hcs=cm.故答案為:.19.(2分)(2023?武昌區(qū)模擬)如圖,在△ABD中,∠A=90°,若BE=mAC,CD=mAB,連接BC、DE交于點(diǎn)F,則cos∠BFE的值為.解:過(guò)點(diǎn)D作DK⊥AD,使得DK=mAC.∵CD=mAB,DK=mAC,∴==m,∵∠A=∠CDK=90°,∴△CDK∽△BAC,∴==m,∵BE=mAC,DK=mAC,∴BE=DK,∵BE=DK,∴四邊形BEDK是平行四邊形,∴DE∥BK,∴∠EFB=∠CBK,設(shè)BC=k則CK=mk,BK=?k,∴cos∠BFE=cos∠CBK====.故答案為:.20.(2分)(2023?金華模擬)如圖1是一款重型訂書(shū)機(jī),其結(jié)構(gòu)示意圖如圖2所示,其主體部分為矩形EFGH,由支撐桿CD垂直固定于底座AB上,且可以繞點(diǎn)D旋轉(zhuǎn).壓桿MN與伸縮片PG連接,點(diǎn)M在HG上,MN可繞點(diǎn)M旋轉(zhuǎn),PG⊥BC,DF=8厘米,不使用時(shí),EF∥AB,G是PF中點(diǎn),tan∠PMG=,且點(diǎn)D在NM的延長(zhǎng)線上,則GF的長(zhǎng)為3厘米;使用時(shí)如圖3,按壓MN使得MN∥AB,此時(shí)點(diǎn)F落在AB上,若CD=2厘米,則壓桿MN到底座AB的距離為(1+)厘米.解:如圖2,延長(zhǎng)NM,則NM過(guò)點(diǎn)D,∵四邊形EFGH是矩形,HG∥EF,∴∠PMG=∠PDF,∴tan∠PDF=tan∠PMG==,即=,PF=6,∵PF=6,∴GF=PF=3(厘米).如圖3,過(guò)點(diǎn)P作PK⊥AB于K,∵M(jìn)N∥AB,∴PK⊥MN,∠MPF=∠PFK,∵∠DFP=∠DCF=90°,∴∠CDF+∠DFC=∠PFK+∠DFC=90°,∴∠PFK=∠CDF=∠MPF,由圖2可得,PG=3,tan∠PMG=,∴MG=4,Rt△DCF中,CF==2,∴tan∠CDF=tan∠MPF==,∴PG=,PF=,∵sin∠CDF=sin∠PFK==,∴PK=(1+)厘米.故答案為:3;(1+).三.解答題(共8小題,滿分60分)21.(8分)(2023?永豐縣模擬)2021年11月9日是我國(guó)第30個(gè)“全國(guó)消防宣傳日”,該年“119消防宣傳月”活動(dòng)的主題是“落實(shí)消防責(zé)任,防范安全風(fēng)險(xiǎn)”.為落實(shí)該主題,江西省南昌市消防大隊(duì)到某小區(qū)進(jìn)行消防演習(xí).已知,圖1是一輛登高云梯消防車(chē)的實(shí)物圖,圖2是其工作示意圖,起重臂AC可伸縮(10m≤AC≤20m),且起重臂AC可繞點(diǎn)A在一定范圍內(nèi)轉(zhuǎn)動(dòng),張角為∠CAE(90°≤∠CAE≤150°),轉(zhuǎn)動(dòng)點(diǎn)A距離地面BD的高度AE為3.5m.(1)當(dāng)起重臂AC長(zhǎng)度為15m,云梯消防車(chē)最高點(diǎn)C距離地面BD的高度為11m,求張角∠CAE的大??;(2)已知該小區(qū)層高為2.8m,若某9樓居民家突發(fā)險(xiǎn)情,請(qǐng)問(wèn)該消防車(chē)能否實(shí)施有效救援?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)解:(1)過(guò)點(diǎn)A作AM⊥CD,垂足為M,則AE=MF=3.5米,∠EAM=90°,∵CF=11米,∴CM=CF﹣MF=11﹣3.5=7.5(米),在Rt△ACM中,AC=15米,∴sin∠CAM===,∴∠CAM=30°,∴∠CAE=∠EAM+∠CAM=120°,∴張角∠CAE為120°;(2)該消防車(chē)不能實(shí)施有效救援,理由:當(dāng)∠CAE=150°,AC=20m時(shí),能達(dá)到最高高度,∵∠EAM=90°,∴∠CAM=∠CAE﹣∠EAM=60°,在Rt△CAM中,CM=AC?sin60°=20×=10(m),∴CF=CM+MF=10+3.5≈20.82(m),∵8×2.8=22.4(m),∴20.82<22.4,∴該消防車(chē)不能實(shí)施有效救援.22.(6分)(2023?合肥模擬)如圖,在一塊截面為矩形ABCD的材料上裁剪出一個(gè)機(jī)器零件(陰影部分),點(diǎn)E,G,H分別在AB,CD,AD邊上,點(diǎn)F在矩形ABCD內(nèi)部.已知BC=1.3米.(1)若E,F(xiàn),G三點(diǎn)在同一條直線上時(shí),AB=2米,求機(jī)器零件(陰影部分)的面積;(2)若∠FBC=50°,∠FCB=37°,求線段CF的長(zhǎng).(參考數(shù)據(jù):sin37°≈0.6,tan37°≈0.75,sin50°≈0.77,tan50°≈1.2)解:(1)如圖1,連接EG,∵E,F(xiàn),G三點(diǎn)在同一條直線上,∴EG經(jīng)過(guò)F,∵EG左邊的陰影部分的面積等于矩形AEGD面積的,EG右邊的陰影部分的面積等于矩形BEGC面積的,∴陰影部分的面積等于矩形ABCD面積的,即陰影部分的面積=(平方米),∴陰影部分的面積為1.3平方米;(2)如圖2,作FP⊥BC于P,設(shè)FP=x,在Rt△BPF中,∠FBC=50°,,即,在Rt△CPF中,∠FCB=37°,∵,即∵BC=1.3米,∴.3,解得x=0.6,在Rt△CPF中,,即,∴CF=1米.23.(8分)(2022春?磐安縣期中)某數(shù)學(xué)興趣小組通過(guò)調(diào)查研究把“如何測(cè)量嵩岳寺塔的高度”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間實(shí)地測(cè)量.課題測(cè)量嵩岳寺塔的高度測(cè)量工具測(cè)量角度的儀器,皮尺等測(cè)量方案在點(diǎn)C處放置高為1.3米的測(cè)角儀CD,此時(shí)測(cè)得塔頂端A的仰角為45°,再沿BC方向走22米到達(dá)點(diǎn)E處,此時(shí)測(cè)得塔頂端A的仰角為32°.說(shuō)明:E、C、B三點(diǎn)在同一水平線上請(qǐng)你根據(jù)表中信息結(jié)合示意圖幫助該數(shù)學(xué)興趣小組求嵩岳寺塔AB的高度.(精確到0.1米,參考數(shù)據(jù):sin32°≈0.52,cos32°≈0.84,tan32°≈0.62)解:延長(zhǎng)FD交AB于點(diǎn)G,則FG⊥AB,CD=GB=1.3米,DF=CE=22米,設(shè)AG=x米,在Rt△AGD中,∠ADG=45°,∴GD==x(米),∴GF=GD+DF=(x+22)米,在Rt△AGF中,∠AFG=32°,∴tan32°==≈0.62,∴x≈35.89,經(jīng)檢驗(yàn),x≈35.89是原方程的根,∴AG≈35.89米,∴AB=AG+BG=35.89+1.3≈37.2(米),∴嵩岳寺塔AB的高度約為37.2米.24.(6分)(2023?來(lái)安縣二模)如圖,某數(shù)學(xué)興趣小組想測(cè)量寶塔的高度,他們?cè)邳c(diǎn)A處測(cè)得塔頂C的仰角為60°,在B處測(cè)得塔頂C的仰角為40°,已知A,B和塔基在一條直線上,測(cè)得AB為71m.請(qǐng)你幫助數(shù)學(xué)興趣小組計(jì)算寶塔的高度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)?解:過(guò)點(diǎn)C作CD⊥AB,垂足為D,設(shè)AD=xm,∵AB=71m,∴BD=AB﹣AD=(71﹣x)m,在Rt△ADC中,∠CAD=60°,∴CD=AD?tan60°=x(m),在Rt△CBD中,∠CBD=40°,∴CD=BD?tan40°≈0.84(71﹣x)m,∴x=0.84(71﹣x),解得:x≈23.2,∴CD=x≈40(m),∴寶塔的高度約為40m.25.(8分)(2023?鄄城縣三模)桑梯——登以採(cǎi)桑,它是我國(guó)古代勞動(dòng)人民發(fā)明的一種采桑工具.圖1是明朝科學(xué)家徐光啟在《農(nóng)政全書(shū)》中用圖畫(huà)描繪的桑梯,其示意圖如圖2所示,已知AB=AC=1.6米,AD=1.2米,設(shè)∠BAC=α,為保證安全,α的調(diào)整范圍是30°≤α≤90°.(1)當(dāng)α=60°時(shí),若人站在AD的中點(diǎn)E處,求此人離地面(BC)的高度.(2)在安全使用范圍下,求桑梯頂端D到地面BC的距離范圍.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,,精確到0.1米)解:(1)過(guò)點(diǎn)E作EH⊥BC,垂足為H,∵AB=AC=1.6米,∠BAC=60°,∴△ABC是等邊三角形,∴∠C=60°,∵點(diǎn)E是AD的中點(diǎn),∴AE=AD=0.6(米),∴EC=AE+AC=2.2(米),在Rt△ECH中,EH=EC?tan60°=2.2≈1.9(米),∴此人離地面(BC)的高度約為1.9米;(2)過(guò)點(diǎn)D作DM⊥BC,垂足為M,當(dāng)∠BAC=30°時(shí),∵AB=AC=1.6米,∴∠B=∠C=(180°﹣∠BAC)=75°,∵AD=1.2米,∴DC=AD+AC=2.8(米),在Rt△DMC中,DM=DC?sin75°≈2.8×0.97≈2.7(m);當(dāng)∠BAC=90°時(shí),∵AB=AC=1.6米,∴∠B=∠C=(180°﹣∠BAC)=45°,在Rt△DMC中,DM=DC?sin45°=2.8×=1.4≈2.0(m);∴在安全使用范圍下,桑梯頂端D到地面BC的距離范圍約為2.0m≤DM≤2.7m.26.(8分)(2023?天山區(qū)校級(jí)二模)數(shù)學(xué)興趣小組測(cè)量建筑物AB的高度.如圖,在建筑物AB前方搭建高臺(tái)CD進(jìn)行測(cè)量.高臺(tái)CD到AB的距離BC為6米,在高臺(tái)頂端D處測(cè)得點(diǎn)A的仰角為40°,測(cè)得點(diǎn)B的俯角為30°.(1)填空:∠ADB=70°;(2)求建筑物AB的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)解:(1)過(guò)點(diǎn)D作DE⊥AB,垂足為E,由題意得:∠ADE=40°,∠BDE=30°,∴∠ADB=∠ADE+∠BDE=40°+30°=70°,故答案為:70;(2)由題意得:DE=BC=6米,在Rt△ADE中,∠ADE=40°,∴AE=DE?tan40°≈6×0.84=5.04(米),在Rt△DEB中,∠BDE=30°,∴BE=DE?tan30°=6×=2≈3.46(米),∴AB=AE+EB=5.04+3.46≈9(米),∴建筑物AB的高度約為9米.27.(8分)(2023?儋州模擬)三亞南山海上觀音圣像是世界上最高的觀音像,某數(shù)學(xué)實(shí)踐小組利用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量觀音圣像的高度AB,如圖,該數(shù)學(xué)實(shí)踐小組在點(diǎn)C處測(cè)得觀音圣像頂端A的仰角為45°,然后沿斜坡CD行走40m到點(diǎn)D處,在點(diǎn)D處測(cè)得觀音圣像頂端A的仰角為32°,已知∠ACD=105°.(點(diǎn)A,B,C,D在同一平面內(nèi))(1)過(guò)點(diǎn)D作DE⊥BC交BC的延長(zhǎng)線于點(diǎn)E,則∠DCE=30°;(2)填空:DE=20m,CE=34m;(結(jié)果精確到1m,參考數(shù)據(jù):≈1.4,≈1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中共西雙版納州委宣傳部公開(kāi)招聘編外聘用人員備考題庫(kù)及一套完整答案詳解
- 2026年上林縣三里鎮(zhèn)人民政府招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 2025年黃沙港鎮(zhèn)人民政府公開(kāi)招聘政府購(gòu)買(mǎi)服務(wù)工作人員備考題庫(kù)及參考答案詳解1套
- 2026年?yáng)|莞市公安局自主(公開(kāi))招聘普通聘員162人備考題庫(kù)及參考答案詳解
- 廣東河源晚報(bào)社招聘筆試題庫(kù)2026
- 浙江寧波市央企招聘筆試題庫(kù)2026
- 移風(fēng)易俗強(qiáng)化制度規(guī)范
- 執(zhí)法設(shè)備標(biāo)定制度規(guī)范
- 規(guī)范學(xué)校合同管理制度
- 糧食復(fù)檢制度規(guī)范要求
- 小學(xué)數(shù)學(xué)低年級(jí)學(xué)生學(xué)情分析
- 水利水電工程建設(shè)用地設(shè)計(jì)標(biāo)準(zhǔn)(征求意見(jiàn)稿)
- 供電一把手講安全課
- 本科實(shí)習(xí)男護(hù)生職業(yè)認(rèn)同感調(diào)查及影響因素分析
- T-GDWCA 0035-2018 HDMI 連接線標(biāo)準(zhǔn)規(guī)范
- 合肥機(jī)床行業(yè)現(xiàn)狀分析
- 面板堆石壩面板滑模結(jié)構(gòu)設(shè)計(jì)
- 無(wú)人機(jī)裝調(diào)檢修工培訓(xùn)計(jì)劃及大綱
- 國(guó)家開(kāi)放大學(xué)《森林保護(hù)》形考任務(wù)1-4參考答案
- GB 31604.1-2023食品安全國(guó)家標(biāo)準(zhǔn)食品接觸材料及制品遷移試驗(yàn)通則
- 殯葬服務(wù)心得體會(huì) 殯儀館工作心得體會(huì)
評(píng)論
0/150
提交評(píng)論