版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
【摘
要】本文研究初中數(shù)學(xué)課堂中,教師應(yīng)如何培養(yǎng)學(xué)生的幾何證明題解題思維。分析初中數(shù)學(xué)幾何教學(xué)中存在的問題,如教學(xué)方式老套、教學(xué)過于重視成績等;列舉幾何證明題解題思維培養(yǎng)策略,如傳授多種證明方法,培養(yǎng)學(xué)生的解題能力、以“教”作為切入點,提升學(xué)生的解題效率、以“練”作為切入點,提升幾何教學(xué)質(zhì)量、使用輔助線,突破幾何教學(xué)重難點。期望本文能夠為廣大數(shù)學(xué)教學(xué)工作者帶來一定的參考作用。【關(guān)鍵詞】初中數(shù)學(xué);幾何證明;解題思維;教學(xué)在課程改革深入推進(jìn)、素質(zhì)教育全面開展的時代背景下,改革初中數(shù)學(xué)教學(xué)、提升學(xué)生的學(xué)習(xí)效率與學(xué)習(xí)質(zhì)量,刻不容緩、勢在必行。在初中數(shù)學(xué)課堂中,幾何證明題是學(xué)生常會遇到的一類題目,這類題目的靈活性較強,部分題目的證明難度較高,因此很多學(xué)生往往無法借助已有的知識儲備,高效地完成解題,這無疑會影響學(xué)生核心素養(yǎng)的持續(xù)成長。因此,在數(shù)學(xué)教學(xué)中,教師應(yīng)重視培養(yǎng)學(xué)生解答幾何證明題的思維,多為學(xué)生傳授一些科學(xué)合理且高效的解題思路,使學(xué)生的解題思維真正契合核心素養(yǎng)的要求,促進(jìn)學(xué)生的成長發(fā)展。一、初中階段學(xué)生的思維特點分析目前看來,中學(xué)生大腦皮層發(fā)育速度快,記憶能力強,對課堂中學(xué)過的知識內(nèi)容,往往能夠產(chǎn)生長時間的記憶。因此在課堂教學(xué)過程中,教師可使用一系列科學(xué)合理的教學(xué)方式,對學(xué)生的思維給予一定的拓展,開發(fā)學(xué)生的學(xué)習(xí)潛能,使學(xué)生事半功倍地完成學(xué)習(xí)。此外,初中生思維的敏銳性,除記憶力強之外,還體現(xiàn)在他們思維角度的新穎性上,也就是說這一階段內(nèi),他們的思維尚未固化,因此具有高度的靈活性。故而,在課堂教學(xué)過程中,教師應(yīng)多發(fā)揮學(xué)生在課堂中的主體性,一方面提升學(xué)生學(xué)習(xí)幾何證明的效率,另一方面為學(xué)生創(chuàng)新能力的提升打下良好的基礎(chǔ)。二、初中數(shù)學(xué)幾何教學(xué)中存在的問題課程改革實施以來,初中數(shù)學(xué)的教學(xué)思路、教學(xué)模式有了明顯的變化,但目前看來,仍然有很多教師沿用著傳統(tǒng)的教學(xué)方式,對位于時代前沿的教學(xué)理念、教學(xué)方法缺乏了解,習(xí)慣使用一系列應(yīng)試教育下的方式、方法,為學(xué)生傳授枯燥乏味的知識,造成課堂學(xué)習(xí)氛圍較為沉悶,學(xué)生的學(xué)習(xí)生活十分單調(diào),久而久之甚至使學(xué)生喪失學(xué)習(xí)數(shù)學(xué)知識的興趣。舉例而言,在初中數(shù)學(xué)教材中,“全等三角形”占據(jù)了較大的篇幅,屬于重難點知識,對學(xué)生數(shù)學(xué)素養(yǎng)的成長,以及后續(xù)的數(shù)學(xué)學(xué)習(xí)有著極為突出的影響力,但目前看來,很多教師在教到這部分知識內(nèi)容時,常會使用一系列“照本宣科”的方式,給予學(xué)生枯燥乏味的教學(xué),要求學(xué)生以“死記硬背”的方式學(xué)習(xí)教材中涉及的概念,忽略從學(xué)生的實際生活出發(fā),引導(dǎo)學(xué)生針對全等三角形的性質(zhì)展開思索,影響了學(xué)生對數(shù)學(xué)知識的理解,進(jìn)而限制了學(xué)生幾何證明思維的發(fā)展。三、初中數(shù)學(xué)幾何證明題解題思維培養(yǎng)策略(一)傳授多種證明方法,增強學(xué)生解題能力解答幾何題,需要學(xué)生融會貫通地使用課堂中學(xué)過的數(shù)學(xué)知識,因此,目前看來,不論是教材中還是教輔資料中給出的幾何題目都有著極為突出的靈活性,對學(xué)生的知識應(yīng)用能力有著較高的要求,學(xué)生只有掌握正確的證明方法,才能夠得心應(yīng)手地利用已知條件,將題目一一擊破。在課堂教學(xué)過程中,教師可通過為學(xué)生傳授多種不同的證明方法,增強學(xué)生的解題能力,循序漸進(jìn)地培養(yǎng)學(xué)生的解題思維,一般來講初中課堂中常用的幾何題證明方法包括如下幾種:其一,分析綜合法。使用正向思維,結(jié)合已知條件,循序漸進(jìn)地推出結(jié)論的一種推理方法,此外,使用逆向思維,從結(jié)果出發(fā),針對結(jié)論成立的條件做出分析的證明方法,也屬于分析綜合法的范疇;其二,反證法。所謂反證法主要指的是在證明某一結(jié)論成立時,先證明它不成立,之后依據(jù)假設(shè)進(jìn)行推理,若推理過程與題目給出的條件以及相關(guān)的數(shù)學(xué)定義相背離,則可證明該結(jié)論正確;其三,面積法。所謂面積法,主要指的是將需要證明的幾何關(guān)系,轉(zhuǎn)化為圖形之間的面積關(guān)系,進(jìn)而達(dá)到證明目的的一種證明方法;其四,代數(shù)法。結(jié)合數(shù)形結(jié)合思想,將幾何問題轉(zhuǎn)化為代數(shù)問題,進(jìn)而通過代數(shù)解答方法得出結(jié)果的一種證明方法。(二)以“教”作為切入點,提升學(xué)生學(xué)習(xí)效率“教”是幾何證明題教學(xué)最為重要的切入點,是課堂教學(xué)的核心之一。實際教學(xué)中,教師應(yīng)懂得立足于教材,為學(xué)生設(shè)計一系列科學(xué)合理、生動高效的教學(xué)活動,使用多樣化的教學(xué)方法,為學(xué)生傳授相應(yīng)的數(shù)學(xué)知識,引導(dǎo)學(xué)生循序漸進(jìn)學(xué)完基礎(chǔ)知識與重難點知識,進(jìn)而掌握一定的證明方法,形成一定的解題思維。在“教”方面,教師應(yīng)重點做好如下幾方面的工作:首先,應(yīng)重視培養(yǎng)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的學(xué)習(xí)積極性。初中生正處于青春期,性格活潑好動,因此驅(qū)動他們探索幾何題目的動力主要還是學(xué)習(xí)興趣,為提升學(xué)生的學(xué)習(xí)熱情,在幾何題教學(xué)中,教師應(yīng)重視使用一系列生動、形象的幾何圖形,激發(fā)學(xué)生的興趣,培養(yǎng)學(xué)生的空間思維能力;其次,使用循循善誘的教學(xué)語言,提升學(xué)生的學(xué)習(xí)效率。目前看來,初中數(shù)學(xué)教材中,有很多幾何知識對于學(xué)生而言都是抽象的、枯燥的,有著一定的學(xué)習(xí)難度,學(xué)生很難在短時間內(nèi)細(xì)致地掌握相應(yīng)的證明方法,如此便會阻礙學(xué)生數(shù)學(xué)素養(yǎng)的成長。為解決這一問題,教師在平時可多使用循循善誘、層層遞進(jìn)的教學(xué)語言指導(dǎo)學(xué)生深入淺出地完成解題,使學(xué)生逐步發(fā)現(xiàn)幾何知識的邏輯性與規(guī)律性,進(jìn)而更好地解答幾何題目?,F(xiàn)階段看來,指導(dǎo)學(xué)生掌握幾何規(guī)律的主要方法,包括如下兩種:其一借助前人的探究成果,發(fā)現(xiàn)幾何知識的規(guī)律;其二在教師的指導(dǎo)下,經(jīng)過一系列的分析、歸納與總結(jié),探析幾何知識的主要規(guī)律。對于學(xué)生而言,這兩種探究方式皆有著一定的應(yīng)用價值,很多解題方法與規(guī)律,在學(xué)生看來是有規(guī)律可行的,長期以如上思路為學(xué)生傳授幾何證明知識,有利于培養(yǎng)學(xué)生靈活且融會貫通的解題思維,這十分有助于促進(jìn)學(xué)生核心素養(yǎng)的成長。(三)以“練”作為切入點,提升幾何教學(xué)質(zhì)量幾何證明題教學(xué)過程中,教師應(yīng)重視培養(yǎng)學(xué)生“理論實踐結(jié)合”的意識,多為學(xué)生提供一系列靈活多變的題目,組織學(xué)生進(jìn)行實戰(zhàn)演練,增強學(xué)生對各類數(shù)學(xué)定理、公式的理解,促進(jìn)學(xué)生解題思維的進(jìn)一步發(fā)展。需要注意的是,為真正使學(xué)生形成“以不變應(yīng)萬變”的解題思維,教師在教學(xué)過程中,應(yīng)重視做好課堂氛圍創(chuàng)設(shè)工作,主動為學(xué)生構(gòu)建一個輕松愉悅、寓教于樂的課堂氛圍,使學(xué)生的學(xué)習(xí)思路不易受到阻滯,引導(dǎo)學(xué)生主動練習(xí)幾何習(xí)題,夯實學(xué)生的基本功。以下面這道題為例:圖1為菱形,連接對角線BD,并在其上取一點P,將A與P連接起來,并將其延長至DC上,記相交點為E,再與BC的延長線交于F,求證PC2=PE·PF。實際教學(xué)中,教師可指導(dǎo)學(xué)生使用“分析綜合法”,借助逆向思維證明結(jié)論成立。如,可先假設(shè)結(jié)論成立,將其轉(zhuǎn)化為比例式=,將題目轉(zhuǎn)化為證明該比例式成立,為證明該式成立,我們需要證明△PCF∽△PEC,結(jié)合題目條件可知,在這兩個三角形中,有一個公共角存在,即∠CPF,之后我們只需證明∠PFC與∠PCE相等,就可得出△PCF∽△PEC的結(jié)論,由于題目已經(jīng)規(guī)定了該圖形為菱形,我們可以結(jié)合菱形的性質(zhì),得出如下分析過程:∠ADB=∠BDC,DC=AD,故而△DAP與△DCP全等,由此可知∠DAP=∠DCP,又因BF與AD平行,且∠DAP=∠PFC,因此可推出∠DCP=∠PFC,最終可得出結(jié)論PC2=PE·PF。由上文所述不難看出,在幾何證明題解題過程中,分析綜合法有著極高的應(yīng)用價值,對于一些較難解答的問題,學(xué)生可使用逆向思維,參考如上推理過程,從題目的結(jié)論出發(fā),創(chuàng)新性地找到能夠使結(jié)論成立的條件,進(jìn)而使結(jié)論成立,完成整個幾何證明過程。在實際教學(xué)中,教師可多結(jié)合相應(yīng)的例題,為學(xué)生傳授此類幾何證明方法,使學(xué)生的解題思維變得更為靈活,引導(dǎo)學(xué)生得心應(yīng)手地解決類似的習(xí)題,促進(jìn)學(xué)生數(shù)學(xué)學(xué)習(xí)水平的穩(wěn)步提升。(四)使用輔助線,突破幾何教學(xué)重難點在解答幾何題目的過程中,學(xué)生通常并不會直接使用原有圖形求解,因為這樣解題,有著過高的難度,實際解題中較易出錯。教師應(yīng)培養(yǎng)學(xué)生使用輔助線進(jìn)行解題的意識與能力,引導(dǎo)學(xué)生使用這一解題工具,將題目簡化,使解題條件變得更為直觀、清晰、明了,使學(xué)生更易找到題目的答案。經(jīng)歸納與總結(jié),筆者認(rèn)為在初中數(shù)學(xué)課堂中,學(xué)生在解答幾何證明題時,多會用到如下幾種不同的輔助線制作方法:其一,連接兩條線段的中點,或制作中位線,進(jìn)而作出輔助線;其二,為線段添加垂線、平行線,制作輔助線;其三,為角添加平分線,或為圖形添加對稱軸,制作輔助線。以下面這道題為例:如圖2所示,在△ABC中,AD平分∠A,求證AB:AC=BD:CD。本道題的解題思路如下:在圖中過D點制作垂直線,使DE與AB垂直、DF與AC垂直,由于AD平分∠A,依據(jù)題目條件,可得出DE與DF相等,如此便可得到===,繼而可推出=,即題目所求結(jié)論。這道題目有著一定的難度,因此在課堂中,學(xué)生往往會感到無從下手,但若為題目給出的圖形添加兩條輔助線,本道題立刻就會變得迎刃而解,學(xué)生推出結(jié)論將會變得更加容易,這足以見得在初中數(shù)學(xué)幾何證明題教學(xué)中,添加輔助線,是一種極為重要的解題方法,教師在平時應(yīng)多從基本的數(shù)學(xué)規(guī)律、數(shù)學(xué)概念出發(fā),引導(dǎo)學(xué)生明晰“輔助線”這一解題方法,增強學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全員A證考試能力測試B卷帶答案詳解(能力提升)
- 押題寶典安全員A證考試考試題庫含答案詳解(輕巧奪冠)
- 2025年度司法考試真題解析含答案
- 基于BIM的施工階段資源調(diào)配方案
- 安全員A證考試從業(yè)資格考試真題帶答案詳解(達(dá)標(biāo)題)
- 安全員A證考試練習(xí)題庫【培優(yōu)】附答案詳解
- 2025江蘇省考《行測》真題及答案解析
- 安全員A證考試綜合檢測提分及參考答案詳解(突破訓(xùn)練)
- 盤龍2022中學(xué)教師招聘考試真題及答案解析卷1
- 安全員A證考試題庫練習(xí)備考題【原創(chuàng)題】附答案詳解
- 運輸人員教育培訓(xùn)制度
- 升降貨梯買賣安裝與使用說明書合同
- 河南豫能控股股份有限公司及所管企業(yè)2026屆校園招聘127人考試備考題庫及答案解析
- 房地產(chǎn)公司2025年度總結(jié)暨2026戰(zhàn)略規(guī)劃
- 物業(yè)管家客服培訓(xùn)課件
- 虛假貿(mào)易十不準(zhǔn)培訓(xùn)課件
- 中央空調(diào)多聯(lián)機施工安全管理方案
- 【初中 地理】2025-2026學(xué)年人教版七年級上冊地理期末復(fù)習(xí)提綱
- 2026年撫順師范高等??茖W(xué)校單招職業(yè)技能測試題庫附答案
- GB/T 46692.2-2025工作場所環(huán)境用氣體探測器第2部分:有毒氣體探測器的選型、安裝、使用和維護(hù)
- 2025人機共育向善而為:AI時代的教育變革探索指南
評論
0/150
提交評論