新高考數(shù)學(xué)一輪復(fù)習(xí)過(guò)關(guān)訓(xùn)練第38課 數(shù)列的綜合應(yīng)用(含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)過(guò)關(guān)訓(xùn)練第38課 數(shù)列的綜合應(yīng)用(含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)過(guò)關(guān)訓(xùn)練第38課 數(shù)列的綜合應(yīng)用(含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)過(guò)關(guān)訓(xùn)練第38課 數(shù)列的綜合應(yīng)用(含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)過(guò)關(guān)訓(xùn)練第38課 數(shù)列的綜合應(yīng)用(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page11頁(yè),共=sectionpages33頁(yè)試卷第=page11頁(yè),共=sectionpages33頁(yè)第38課數(shù)列的綜合應(yīng)用學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________【基礎(chǔ)鞏固】1.(2022·遼寧·沈陽(yáng)二中模擬預(yù)測(cè))我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見(jiàn)的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬(wàn)元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為SKIPIF1<0,設(shè)張華第SKIPIF1<0個(gè)月的還款金額為SKIPIF1<0元,則SKIPIF1<0(

)A.2192 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出SKIPIF1<0個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第SKIPIF1<0個(gè)月的還款金額為SKIPIF1<0元,則SKIPIF1<0,故選:D2.(2022·山東泰安·一模)已知數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0.若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由等差數(shù)列通項(xiàng)公式得SKIPIF1<0,再結(jié)合題意得數(shù)列SKIPIF1<0單調(diào)遞增,且滿足SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列,所以SKIPIF1<0,由于數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0對(duì)任意的SKIPIF1<0都成立,故數(shù)列SKIPIF1<0單調(diào)遞增,且滿足SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:SKIPIF1<0.3.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則稱(chēng)項(xiàng)SKIPIF1<0為“和諧項(xiàng)",則數(shù)列SKIPIF1<0的所有“和諧項(xiàng)”的平方和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)SKIPIF1<0,得到SKIPIF1<0,兩式相減得到SKIPIF1<0,從而得到數(shù)列的通項(xiàng)公式,根據(jù)“和諧項(xiàng)"的定義可得SKIPIF1<0,再利用等比數(shù)列的前SKIPIF1<0項(xiàng)和可得答案.【詳解】①SKIPIF1<0,②SKIPIF1<0,①-②得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0的所有“和諧項(xiàng)”的平方和為SKIPIF1<0.故選:D.4.(2022·北京朝陽(yáng)·一模)已知數(shù)列SKIPIF1<0,若存在一個(gè)正整數(shù)SKIPIF1<0使得對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則稱(chēng)SKIPIF1<0為數(shù)列SKIPIF1<0的周期.若四個(gè)數(shù)列分別滿足:①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;④SKIPIF1<0,SKIPIF1<0.則上述數(shù)列中,8為其周期的個(gè)數(shù)是(

)A.1 B.2 C.3 D.4【答案】B【分析】利用數(shù)列的周期的定義逐項(xiàng)分析即得.【詳解】①∵SKIPIF1<0,∴數(shù)列SKIPIF1<0的周期為SKIPIF1<0,故8也是數(shù)列SKIPIF1<0的周期;②由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0故數(shù)列SKIPIF1<0的周期為SKIPIF1<0;③由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得,SKIPIF1<0,故數(shù)列SKIPIF1<0的周期為SKIPIF1<0;④由SKIPIF1<0,SKIPIF1<0可得,SKIPIF1<0,故數(shù)列SKIPIF1<0的周期為SKIPIF1<0,所以8也是數(shù)列SKIPIF1<0的周期.故8為其周期的數(shù)列個(gè)數(shù)為2.故選:B.5.(2022·全國(guó)·高三專(zhuān)題練習(xí))朱世杰是元代著名數(shù)學(xué)家,他所著的《算學(xué)啟蒙》是一部在中國(guó)乃至世界最早的科學(xué)普及著作.《算學(xué)啟蒙》中涉及一些“堆垛”問(wèn)題,主要利用“堆垛”研究數(shù)列以及數(shù)列的求和問(wèn)題.現(xiàn)有132根相同的圓形鉛筆,小明模仿“堆垛”問(wèn)題,將它們?nèi)慷逊懦煽v斷面為等腰梯形的“垛”,要求層數(shù)不小于2,且從最下面一層開(kāi)始,每一層比上一層多1根,則該“等腰梯形垛”應(yīng)堆放的層數(shù)可以是(

)A.5 B.6 C.7 D.8【答案】D【分析】把各層的鉛筆數(shù)看出等差數(shù)列,利用求和公式得到SKIPIF1<0,由n為264的因數(shù),且SKIPIF1<0為偶數(shù),把四個(gè)選項(xiàng)一一代入驗(yàn)證即可.【詳解】設(shè)最上面一層放SKIPIF1<0根,一共放n(n≥2)層,則最下一層放SKIPIF1<0根,由等差數(shù)列前n項(xiàng)和公式得:SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴n為264的因數(shù),且SKIPIF1<0為偶數(shù),把各個(gè)選項(xiàng)分別代入,驗(yàn)證,可得:n=8滿足題意.故選:D6.(2022·江蘇·鹽城中學(xué)高三開(kāi)學(xué)考試)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0).記SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,則使SKIPIF1<0成立的最小正整數(shù)為(

)A.5 B.6 C.7 D.8【答案】C【分析】根據(jù)SKIPIF1<0之間的關(guān)系證明SKIPIF1<0為等比數(shù)列,然后再證明SKIPIF1<0也是等比數(shù)列,由此求解出SKIPIF1<0.根據(jù)不等式結(jié)合指數(shù)函數(shù)單調(diào)性求解出SKIPIF1<0的取值范圍,從而確定出SKIPIF1<0的最小整數(shù)值.【詳解】解析:由SKIPIF1<0,可知SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是以1為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列.∴SKIPIF1<0.又SKIPIF1<0,∴數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列.∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0的最小值為7.故選:C.7.(2022·山東·聊城二中高三開(kāi)學(xué)考試)在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則取該數(shù)列的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)的偶數(shù)2,4;第三次取3個(gè)連續(xù)奇數(shù)5,7,9;第四次取4個(gè)連續(xù)的偶數(shù)10,12,14,16;第五次取5個(gè)連續(xù)的奇數(shù)17,19,21,23,25;按此規(guī)律取下去,得到一個(gè)數(shù)列1,2,4,5,7,9,10,12,14,16,17,19…,則這個(gè)數(shù)列中第2022個(gè)數(shù)是(

)A.3974 B.3976 C.3978 D.3980【答案】D【分析】由題意可得,找出取數(shù)的規(guī)律為:奇數(shù)次取奇數(shù)個(gè)奇數(shù),偶數(shù)次取偶數(shù)個(gè)偶數(shù),前SKIPIF1<0次總共取的數(shù)各數(shù)量可以通過(guò)等差數(shù)列求和得到,且第SKIPIF1<0次的最后一個(gè)數(shù)為SKIPIF1<0,據(jù)此即可求解.【詳解】由題意可得,奇數(shù)次取奇數(shù)個(gè)奇數(shù),偶數(shù)次取偶數(shù)個(gè)偶數(shù),前SKIPIF1<0次共取了SKIPIF1<0個(gè)數(shù),且第SKIPIF1<0次的最后一個(gè)數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故到第63次取時(shí)取了63個(gè)奇數(shù),且前63次共取了2016個(gè)數(shù),即第2016個(gè)數(shù)為SKIPIF1<0,∴SKIPIF1<0時(shí),依次為3970,3972,3974,3976,3978,3980,...,∴第2022個(gè)數(shù)為3980.故選:D.8.(2022·江蘇·高三專(zhuān)題練習(xí))若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則稱(chēng)數(shù)列SKIPIF1<0是數(shù)列SKIPIF1<0的“均值數(shù)列”.已知數(shù)列SKIPIF1<0是數(shù)列SKIPIF1<0的“均值數(shù)列”且通項(xiàng)公式為SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意,求得SKIPIF1<0,進(jìn)而求得數(shù)列的通項(xiàng)公式為SKIPIF1<0,結(jié)合裂項(xiàng)法求得數(shù)列的前SKIPIF1<0和SKIPIF1<0,得出不等式SKIPIF1<0,即可求得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】由題意,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,由“均值數(shù)列”的定義可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0也滿足SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,所以SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.9.(多選)(2022·重慶巴蜀中學(xué)高三階段練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0是等比數(shù)列 B.對(duì)任意的SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0對(duì)任意SKIPIF1<0都成立 D.SKIPIF1<0【答案】BCD【分析】根據(jù)所給數(shù)列性質(zhì)利用SKIPIF1<0判斷A,由函數(shù)不等式SKIPIF1<0推導(dǎo)出SKIPIF1<0可判斷B,利用B中結(jié)論遞推可判斷C,由對(duì)數(shù)運(yùn)算及數(shù)列求和后放縮可判斷D.【詳解】由SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0不是等比數(shù)列,A;由SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,由SKIPIF1<0為正項(xiàng)數(shù)列,得SKIPIF1<0,故SKIPIF1<0,故B正確;由B知SKIPIF1<0,故C正確;SKIPIF1<0則SKIPIF1<0,故D正確.故選:BCD10.(多選)(2022·江蘇·蘇州市第六中學(xué)校三模)在數(shù)列SKIPIF1<0中,若SKIPIF1<0(SKIPIF1<0為非零常數(shù)),則稱(chēng)SKIPIF1<0為“等方差數(shù)列”,SKIPIF1<0稱(chēng)為“公方差”,下列對(duì)“等方差數(shù)列”的判斷正確的是(

)A.SKIPIF1<0是等方差數(shù)列B.若正項(xiàng)等方差數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,且SKIPIF1<0是等比數(shù)列,則SKIPIF1<0C.等比數(shù)列不可能為等方差數(shù)列D.存在數(shù)列SKIPIF1<0既是等方差數(shù)列,又是等差數(shù)列【答案】BC【分析】根據(jù)等方差數(shù)列定義判斷A,由等方差數(shù)列定義及等比數(shù)列求SKIPIF1<0判斷B,根據(jù)等方差數(shù)列定義及等比數(shù)列的通項(xiàng)公式判斷C,由等差數(shù)列及等方差數(shù)列定義,利用反證法判斷D.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0不滿足為非零常數(shù),所以SKIPIF1<0不是等方差數(shù)列,故A錯(cuò)誤;由題意SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足題意,故B正確;設(shè)數(shù)列SKIPIF1<0為等比數(shù)列,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0為常數(shù),則SKIPIF1<0,但此時(shí)SKIPIF1<0,不滿足題意,故C正確;若數(shù)列SKIPIF1<0既是等方差數(shù)列,又是等差數(shù)列,不妨設(shè)SKIPIF1<0,(SKIPIF1<0為非零常數(shù)),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為常數(shù)列,這與SKIPIF1<0,SKIPIF1<0矛盾,故D錯(cuò)誤.故選:BC11.(2022·浙江·高三專(zhuān)題練習(xí))已知桶SKIPIF1<0中盛有2升水,桶SKIPIF1<0中盛有1升水.現(xiàn)將桶SKIPIF1<0中的水的SKIPIF1<0和桶SKIPIF1<0中的水的SKIPIF1<0倒入桶SKIPIF1<0中,再將桶SKIPIF1<0與桶SKIPIF1<0中剩余的水倒入桶SKIPIF1<0中;然后將桶SKIPIF1<0中的水的SKIPIF1<0和桶SKIPIF1<0中的水的SKIPIF1<0倒入桶SKIPIF1<0中,再將桶SKIPIF1<0與桶SKIPIF1<0中剩余的水倒入桶SKIPIF1<0中;若如此繼續(xù)操作下去,則桶SKIPIF1<0SKIPIF1<0中的水比桶SKIPIF1<0SKIPIF1<0中的水多_______升.【答案】SKIPIF1<0.【分析】根據(jù)題意,得到SKIPIF1<0,SKIPIF1<0之間的關(guān)系,然后用數(shù)列知識(shí)求解.【詳解】根據(jù)題意可得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<012.(2022·江蘇·金陵中學(xué)高三階段練習(xí))數(shù)列SKIPIF1<0通項(xiàng)公式SKIPIF1<0.若等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0,都有SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0___________.【答案】SKIPIF1<0【分析】根據(jù)題意求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0;當(dāng)SKIPIF1<0時(shí)設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0列出關(guān)于SKIPIF1<0的不等式,進(jìn)而得出SKIPIF1<0,利用不等式的性質(zhì)求得SKIPIF1<0,結(jié)合等差數(shù)列的通項(xiàng)公式即可得出結(jié)果.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,整理,得SKIPIF1<0,又SKIPIF1<0為等差數(shù)列,設(shè)SKIPIF1<0,即SKIPIF1<0,整理,得SKIPIF1<0,對(duì)SKIPIF1<0恒成立由SKIPIF1<0,知SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是以2為公差,以1為首項(xiàng)的等差數(shù)列,故SKIPIF1<0.故答案為:SKIPIF1<0.13.(2022·湖南·雅禮中學(xué)高三階段練習(xí))數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,對(duì)SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的最大值為_(kāi)__________.【答案】SKIPIF1<0【分析】應(yīng)用構(gòu)造法求SKIPIF1<0的通項(xiàng)公式,即得SKIPIF1<0通項(xiàng)公式,進(jìn)而討論SKIPIF1<0、SKIPIF1<0研究題設(shè)不等式恒成立,在SKIPIF1<0時(shí)構(gòu)造SKIPIF1<0并研究單調(diào)性,即可求SKIPIF1<0的最大值.【詳解】由SKIPIF1<0,可得SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項(xiàng)SKIPIF1<0,公差SKIPIF1<0的等差數(shù)列,則SKIPIF1<0,∴SKIPIF1<0,由已知有:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),顯然符合題意,當(dāng)SKIPIF1<0時(shí),由已知得:SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴數(shù)列SKIPIF1<0遞增,則SKIPIF1<0的最小值為SKIPIF1<0,故只需SKIPIF1<0.故答案為:SKIPIF1<0.14.(2022·江蘇省響水中學(xué)高三階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,對(duì)任意SKIPIF1<0,SKIPIF1<0且SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【詳解】試題分析:由SKIPIF1<0,得;當(dāng)時(shí),,若為偶數(shù),則,∴(為正奇數(shù));若為奇數(shù),則,∴(為正偶數(shù)).函數(shù)(為正奇數(shù))為減函數(shù),最大值為,函數(shù)(為正偶數(shù))為增函數(shù),最小值為.若SKIPIF1<0恒成立,則,即.故答案為SKIPIF1<0.15.(2022·湖南·長(zhǎng)郡中學(xué)高三階段練習(xí))已知數(shù)列SKIPIF1<0對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0_________.②若存在SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0恒為常數(shù)P,則P=_________.【答案】

2

1【分析】根據(jù)通項(xiàng)公式確定SKIPIF1<0的周期性即可求SKIPIF1<0,由題設(shè)可得SKIPIF1<0,討論SKIPIF1<0的奇偶性確定后續(xù)數(shù)列出現(xiàn)奇數(shù)項(xiàng)與SKIPIF1<0相等,列方程求P的值.【詳解】由題設(shè)通項(xiàng)公式,可得SKIPIF1<0,故從第二項(xiàng)開(kāi)始形成周期為3的數(shù)列,而SKIPIF1<0,故SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為奇數(shù)時(shí)SKIPIF1<0為偶數(shù),故SKIPIF1<0;若SKIPIF1<0為奇數(shù),由SKIPIF1<0,故SKIPIF1<0,不滿足;若SKIPIF1<0為偶數(shù),則SKIPIF1<0直到為奇教,有SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)滿足條件,此時(shí)SKIPIF1<0,即SKIPIF1<0,故答案為:2,116.(2022·江蘇省江陰高級(jí)中學(xué)高三開(kāi)學(xué)考試)已知SKIPIF1<0是公差為1的等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(Ⅰ)求SKIPIF1<0的通項(xiàng)公式;

(Ⅱ)求數(shù)列SKIPIF1<0的前n項(xiàng)和.【解】(1)由題意得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0,

所以SKIPIF1<0.17.(2022·山東日照·高三開(kāi)學(xué)考試)已知數(shù)列{an},{bn},{cn}中,SKIPIF1<0.(Ⅰ)若數(shù)列{bn}為等比數(shù)列,且公比SKIPIF1<0,且SKIPIF1<0,求q與{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}為等差數(shù)列,且公差SKIPIF1<0,證明:SKIPIF1<0.SKIPIF1<0【解】(I)依題意SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,所以解得SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0.所以SKIPIF1<0(SKIPIF1<0).所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0符合,故SKIPIF1<0.(II)依題意設(shè)SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0所以SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0,SKIPIF1<0.18.(2022·湖南·長(zhǎng)沙一中高三階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等差數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0相除得SKIPIF1<0整理為:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0為等差數(shù)列,公差SKIPIF1<0,首項(xiàng)為SKIPIF1<0;所以SKIPIF1<0,整理為:SKIPIF1<0,經(jīng)檢驗(yàn),符合要求.(2)由(1)得:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【素養(yǎng)提升】1.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0成等比數(shù)列,且SKIPIF1<0.若SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先證不等式SKIPIF1<0,再確定公比的取值范圍,進(jìn)而作出判斷.【詳解】令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0,若公比SKIPIF1<0,則SKIPIF1<0,不合題意;若公比SKIPIF1<0,則SKIPIF1<0但SKIPIF1<0,即SKIPIF1<0,不合題意;因此SKIPIF1<0,SKIPIF1<0,選B.2.(2022·湖北·天門(mén)市教育科學(xué)研究院模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的首項(xiàng)是SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,若存在常數(shù)SKIPIF1<0,使不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先由數(shù)列通項(xiàng)與前SKIPIF1<0項(xiàng)和的關(guān)系得到數(shù)列SKIPIF1<0的遞推關(guān)系SKIPIF1<0,再構(gòu)造等比數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式,進(jìn)一步求出數(shù)列SKIPIF1<0的通項(xiàng)公式,從而可求數(shù)列SKIPIF1<0通項(xiàng)公式,代入所求式子SKIPIF1<0,分子、分母同除以SKIPIF1<0構(gòu)造基本不等式即可求出SKIPIF1<0的最大值,從而求出SKIPIF1<0的范圍.【詳解】由SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,兩式相減得SKIPIF1<0,變形可得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,∴數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng)、SKIPIF1<0為公比的等比數(shù)列,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0.故選:C.3.(2022·浙江·紹興一中高三期末)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),下列判斷不一定正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.存在正整數(shù)k,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立【答案】C【分析】對(duì)于A,由已知可得SKIPIF1<0,有基本不等式可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而可判斷;對(duì)于B,利用放縮法可得SKIPIF1<0,即可得SKIPIF1<0,再根據(jù)SKIPIF1<0,即可判斷;對(duì)于C,利用放縮法舉出反例即可判斷;對(duì)于D,由SKIPIF1<0,得SKIPIF1<0,再利用放縮法可得SKIPIF1<0,從而可求得SKIPIF1<0得范圍,即可判斷.【詳解】解:對(duì)于A,因?yàn)镾KIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0同號(hào),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故A正確;對(duì)于B,由SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,對(duì)任意SKIPIF1<0都成立,故B正確;對(duì)于C,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,命題SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0成立,考慮SKIPIF1<0較小時(shí),若此時(shí)SKIPIF1<0較大,則SKIPIF1<0不成立,比如,SKIPIF1<0,SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,要使SKIPIF1<0,只需保證SKIPIF1<0,所以只需SKIPIF1<0,所以存在正整數(shù)k,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,故D正確.故選:C.4.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知集合SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0的所有元素從小到大依次排列構(gòu)成一個(gè)數(shù)列SKIPIF1<0.記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,則使得SKIPIF1<0成立的n的最小值為_(kāi)_______.【答案】27【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0由SKIPIF1<0得SKIPIF1<0所以只需研究SKIPIF1<0是否有滿足條件的解,此時(shí)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列項(xiàng)數(shù),且SKIPIF1<0.由SKIPIF1<0得滿足條件的SKIPIF1<0最小值為SKIPIF1<0.5.(2022·福建廈門(mén)·模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0與數(shù)列SKIPIF1<0的前n項(xiàng)和分別為SKIPIF1<0,則SKIPIF1<0_________;若SKIPIF1<0對(duì)于SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【答案】

SKIPIF1<0

SKIPIF1<0【分析】設(shè)SKIPIF1<0,S

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論