2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷含解析_第1頁
2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷含解析_第2頁
2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷含解析_第3頁
2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷含解析_第4頁
2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省樂德州市夏津縣重點達標名校中考數(shù)學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°2.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.23.在中,,,下列結論中,正確的是()A. B.C. D.4.由4個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.5.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.6.已知一元二次方程的兩個實數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.67.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.48.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.9.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°10.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.11.把6800000,用科學記數(shù)法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×10812.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若代數(shù)式在實數(shù)范圍內有意義,則x的取值范圍是_______.14.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側,連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.15.如圖,在中,,點D、E分別在邊、上,且,如果,,那么________.16.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.17.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.18.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.20.(6分)先化簡,再求值:,其中m是方程的根.21.(6分)拋物線:與軸交于,兩點(點在點左側),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當時,求拋物線的函數(shù)表達式;(3)在(2)的條件下,直線:經(jīng)過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標分別記為,,直線與直線的交點的橫坐標記為,若當時,總有,請結合函數(shù)的圖象,直接寫出的取值范圍.22.(8分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.23.(8分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.24.(10分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.25.(10分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學樓的高BD.(結果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)26.(12分)小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數(shù)字2、3、4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.如果和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.27.(12分)為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設立了以我國古代數(shù)學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:“祖沖之獎”的學生成績統(tǒng)計表:分數(shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關鍵.2、C【解題分析】

通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【題目點撥】本題綜合考查了菱形性質和一次函數(shù)圖象性質,解答過程中要注意函數(shù)圖象變化與動點位置之間的關系.3、C【解題分析】

直接利用銳角三角函數(shù)關系分別計算得出答案.【題目詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【題目點撥】此題主要考查了銳角三角函數(shù)關系,熟練掌握銳角三角函數(shù)關系是解題關鍵.4、A【解題分析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點:三視圖視頻5、A【解題分析】

根據(jù)等邊三角形的性質得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內角和得到∠AFG=90°,根據(jù)相似三角形的性質得到==,==,根據(jù)三角形的面積公式即可得到結論.【題目詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【題目點撥】本題考查了等邊三角形的性質,相似三角形的判定和性質,三角形的面積的計算,熟練掌握相似三角形的性質和判定是解題的關鍵.6、B【解題分析】

根據(jù)根與系數(shù)的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【題目詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.7、B【解題分析】

先由平均數(shù)是3可得x的值,再結合方差公式計算.【題目詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【題目點撥】本題主要考查算術平均數(shù)和方差,解題的關鍵是熟練掌握平均數(shù)和方差的定義.8、C【解題分析】

先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【題目詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【題目點撥】本題主要考查無理數(shù)的定義,屬于簡單題.9、B【解題分析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【題目詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【題目點撥】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.10、A【解題分析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.11、B【解題分析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:把6800000用科學記數(shù)法表示為6.8×1.故選B.點睛:本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.12、A【解題分析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【題目詳解】如圖,點E即為所求作的點.故選:A.【題目點撥】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】先根據(jù)二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.解:∵在實數(shù)范圍內有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于2.14、.【解題分析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質得BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【題目詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【題目點撥】本題考查了正方形的性質與全等三角形的性質,解題的關鍵是熟練的掌握正方形與全等三角形的性質與應用.15、【解題分析】

根據(jù),,得出,利用相似三角形的性質解答即可.【題目詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【題目點撥】本題考查了相似三角形的判定與性質.關鍵是要懂得找相似三角形,利用相似三角形的性質求解.16、150【解題分析】設綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經(jīng)過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.17、1:1.【解題分析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.18、【解題分析】

過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【題目詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【題目點撥】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)OE=;(2)陰影部分的面積為【解題分析】

(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據(jù)特殊角的三角函數(shù)即可求得;(2)由題意不難證明△COE≌△AFE,進而將要求的陰影部分面積轉化為扇形FOC的面積,利用扇形面積公式求解即可.【題目詳解】解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵OE⊥AC,∴OE?//?BC,又∵點O是AB中點,∴OE是△ABC的中位線,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)連接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF為等邊三角形,∴AF=AO=CO,∵在Rt△COE與Rt△AFE中,,∴△COE≌△AFE,∴陰影部分的面積=扇形FOC的面積,∵S扇形FOC==π.∴陰影部分的面積為π.【題目點撥】本題主要考查圓的性質、全等三角形的判定與性質、中位線的證明以及扇形面積的計算,較為綜合.20、原式=.∵m是方程的根.∴,即,∴原式=.【解題分析】試題分析:先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程的根,那么,可得的值,再把的值整體代入化簡后的式子,計算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點:分式的化簡求值;一元二次方程的解.21、(1);(2);(3)【解題分析】

(1)根據(jù)拋物線的函數(shù)表達式,利用二次函數(shù)的性質即可找出拋物線的對稱軸;(2)根據(jù)拋物線的對稱軸及即可得出點、的坐標,根據(jù)點的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)表達式;(3)利用配方法求出拋物線頂點的坐標,依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點的坐標特征可得出,結合的取值范圍即可得出的取值范圍.【題目詳解】(1)∵拋物線的表達式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標為,點的坐標為.將代入,得:,解得:,∴拋物線的函數(shù)表達式為.(3)∵,∴點的坐標為.∵直線y=n與直線的交點的橫坐標記為,且當時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經(jīng)過拋物線的頂點,∴,∴.【題目點撥】本題考查了二次函數(shù)的性質、待定系數(shù)法求二次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)利用二次函數(shù)的性質找出拋物線的對稱軸;(2)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式;(3)依照題意畫出圖形,利用數(shù)形結合找出.22、(1)詳見解析;(2)詳見解析;(3)2.【解題分析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.23、(1)證明見解析;(2)AB=【解題分析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=24、(1)(0,3);(2).【解題分析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點B的坐標;(2)由=BC?OA,得到BC=4,進而得到C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【題目詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點B的坐標是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點:一次函數(shù)的性質.25、(1)38°;(2)20.4m.【解題分析】

(1)過點C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學樓的高.【題目詳解】(1)過點C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論