文件自動(dòng)控制原理_第1頁(yè)
文件自動(dòng)控制原理_第2頁(yè)
文件自動(dòng)控制原理_第3頁(yè)
文件自動(dòng)控制原理_第4頁(yè)
文件自動(dòng)控制原理_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PrinciplesofAutomaticControlPrinciplesofAutomaticControl自動(dòng)控制原理Topic5(Chapter6intext顧申申Shenshen(KevinPh.D.(CUHK),AssociateProfessorDepartmentofAutomationShanghaiReviewforthepreviousThreeobjectivesReviewforthepreviousThreeobjectivesindesigningacontrolsystem(Topic–––Transientresponse(Topic3);Stability(Thistopic);Steadystateerror(NextStabilityisthemostimportantsystemspecification.Ifasystemisunstable,transientresponseandsteady-stateerrorsaremootInthistopic,wewillstudyhowtodeterminewhetherasystemisstableornot.2NewterminologiesinthisColumnNewterminologiesinthisColumnQuadrantalsymmetrical象限對(duì)稱(chēng)不穩(wěn)Lefthalf-plane(lhpRighthalf-plane(rhpRouthtableRow3LearningOutcomesforTopicLearningOutcomesforTopicAftercompletingthistopic,youwillbeableMakeandinterpretabasicRouthtabletodeterminethestabilityofasystem;MakeandinterpretaRouthtablewhereeitherthefirstelementofarowiszerooranentirerowiszero.4BriefRouth-HurwitzRouth-HurwitzBriefRouth-HurwitzRouth-HurwitzCriterion:SpecialZeroOnlyintheFirstEntireRowisRouth-HurwitzCriterion:Additional5BriefThreeobjectivesindesigningacontrolsystemBriefThreeobjectivesindesigningacontrolsystem(Topic–––Transientresponse(Topic3);Stability(Thistopic);Steadystateerror(NextStabilityisthemostimportantsystemspecification.Ifasystemisunstable,transientresponseandsteady-stateerrorsaremootIfanengineermakesamistakeinhisstabilityanalysis,andwhathethinkisastablesystemisactuallyunstable:–––Unexpectedunboundedsystemresponse;Damagetoproperty;Injuryordeathtopeopleinthevicinity6WhatisTherearemanyWhatisTherearemanydefinitionsforstability,dependinguponthekindofsystemorthepointofview.––StabilitydefinitionforlinearsystemsfromtheviewpointofnaturalStabilitydefinitionforlinearsystemsfromtheviewpointoftotal7StabilitydefinitionforlinearsystemsfromtheviewpointofnaturalresponseTotalStabilitydefinitionforlinearsystemsfromtheviewpointofnaturalresponseTotalresponse=Naturalresponse+Forced–––Stable:Naturalresponsedecaystozeroastimeapproachesinfinity;Unstable:Naturalresponseincreaseswithoutbound;Marginallystable:NaturalresponseneitherdecaynorgrowwithoutboundbutThesedefinitionsrelyonadescriptionofthenaturalItmaybedifficulttoseparatethenaturalresponsefromtheforcedresponse.8StabilitydefinitionforlinearsystemsfromStabilitydefinitionforlinearsystemsfromtheviewpointoftotalresponseIftheinputisboundedandthetotalresponseisnotapproachinginfinityastimeapproachesinfinity,thenthenaturalresponseisobviouslynotapproachinginfinity.––Stable:IfeveryboundedinputyieldsaboundedoutputUnstable:Ifanyboundedinputyieldsanunbounded9HowtodeterminewhetherasystemisHowtodeterminewhetherasystemisstableorFocusonthenaturalresponsedefinitionsofThepolesofthetransferfunctiongeneratetheformofnaturalresponse.(Topic&p2=Exponentialdecay&p3c=Decayingoscillation&p4c=Pureoscillation=Exponentialp6&=IncreasingStablesystemshaveclosed-loopStablesystemshaveclosed-looptransferfunctionswithpolesONLYinthelefthalf-plane;Unstablesystemshaveclosed-looptransferfunctionswithatleastonepoleintherighthalf-planeand/orpolesofmultiplicitygreaterthan1ontheimaginaryaxis.Marginallystablesystemshaveclosed-looptransferfunctionswithonlyimaginaryaxispolesofmultiplicity1andpolesintheleftExampleofStableExampleofStableExampleofUnstableExampleofUnstableItisnotalwaysItisnotalwaysasimplemattertodetermineifafeedbackcontrolsystemisstable.Weknowthepolesoftheforwardtransferfunctioninthefollowingsystem,butwedonotknowthelocationofthepolesoftheequivalentclosed-loopsystem.WhatdoyoudowhentheWhatdoyoudowhentheclosedlooptransferfunctionpolynomialishorrendous?+54.32s233++0.0032s+Oneoption–plugintoacalculatororMatlabtosolveforGoodforcheckingaspecificsystemconfiguration,butwon’tgiveyouarangeofallowablesystemparameters.ExamplewhereyouhaveanunknownSpringconstantKExamplewhereyouhaveanunknownSpringconstantKinthedenominatorpolynomial:s234+++0.0032s+UsetrialanderrorvaluesofKtofindstablesystemconfigurations,butcouldbepainful!Solution–theRouth-HurwitzcriterionforThisisamethodforfindingouthowmanyclosed-loopsystempolesareinthelefthalfplane,righthalfplane,andontheimaginaryaxis.Doesn’ttelluswherethepolesarelocated,butthisdoesn’tmatterforsimplyworkingoutwhetherasystemisstableRouth,E.J.DynamicsofRouth,E.J.DynamicsofaSystemofRigidBodies,6thed.Macmillam,London,1905ThismethodrequirestwoGenerateadatatablecalledaRouthInterprettheRouthtabletotellhowmanyclosed-loopsystempolesareinthelefthalf-plane,therighthalf-plane,andonthejω-axis.Thepowerofthemethodliesindesignratherthananalysis.EdwardJohnRouth(1831-GeneratingaBasicRouthBeginbylabelingtheGeneratingaBasicRouthBeginbylabelingtherowswithpowersofsfromthehighestpowerofthedemoninatoroftheclosed-looptransferfunctiontos0.Nextstartwiththecoefficientofthehighestpowerofsinthedenominatorandlist,horizontallyinthefirstrow,everyotherInthesecondrow,listhorizontally,startingwiththenexthighestpowerofs,everycoefficientthatwasskippedinthefirstrow.Theremainingentriesarefilledinas–EachTheremainingentriesarefilledinas–Eachentryisanegativedeterminantofentriesintheprevioustworowsdividedbytheentryinthefirstcolumndirectlyabovethecalculatedrow.Theleft-handcolumnofthedeterminantisalwaysthefirstcolumnoftheprevioustworows,andtheright-handcolumnistheelementsofthecolumnaboveandtotheThetableiscompletewhenalloftherowsarecompleteddownto––MaketheRouthtablefortheMaketheRouthtableforthesystemshowninthefollowingForconvenience,anyrowoftheRouthtablecanbemultipliedbyaForconvenience,anyrowoftheRouthtablecanbemultipliedbyapositiveconstantwithoutchangingthevaluesoftherowsbelow.InterpretingtheBasicRouthTheRouth-Hurwitzcriteriondeclaresthatthenumberofrootsofthepolynomialthatareintherighthalf-planeisequalInterpretingtheBasicRouthTheRouth-Hurwitzcriteriondeclaresthatthenumberofrootsofthepolynomialthatareintherighthalf-planeisequaltothenumberofsignchangesinthefirstcolumn.Thus,thesystemisunstablesincetwopolesexistintherighthalf-plane.1-1.7068+1.7068-21234Oneminute(1)Isthissystemstable1234Oneminute(1)Isthissystemstableor(A)Stable(B)HowmanyrootslocatedintherighthalfOne(B)Two(C)ThreeD)SpecialCases1:ZeroOnlySpecialCases1:ZeroOnlyintheFirstIfthefirstelementofarowiszero,divisionbyzerowouldberequiredtoformthenextrow.Toavoidthisphenomenon,anextremelysmallpositiveε,isassignedtoreplacethezerointhefirstExample:DeterminethestabilityofExample:Determinethestabilityoftheclosed-looptransferfunctionThetableshowsasignThetableshowsasignchangefromthes3rowtothes2row,andtherewillbeanothersignchangefromthes2rowtothes1row.Hence,thesystemisunstableandhastwopolesintherighthalf-plane.SpecialCases2:EntireRowSpecialCases2:EntireRowisSometimeswhilemakingaRouthtable,wefindthatanentirerowconsistsofzerosbecausethereisanevenpolynomialthatisafactoroftheoriginalpolynomial.Thiscasemustbehandleddifferentlyfromthecaseofazeroinonlythefirstcolumnofarow.AnentirerowofzeroswillappearAnentirerowofzeroswillappearintheRouthtablewhenapurelyevenorpurelyoddpolynomialisafactoroftheoriginalpolynomial.+5s2+Evenpolynomialsonlyhaverootsthataresymmetricalabouttheorigin.Thissymmetrycanoccurunderthreeconditionsofrootposition:–––TherootsaresymmetricalandTherootsaresymmetricalandimaginary;Therootsarequadrantal.ItisthisevenpolynomialItisthisevenpolynomialthatcausestherowofzerostoappear.Therowprevioustotherowofzeroscontainstheevenpolynomialthatisafactoroftheoriginalpolynomial.everythingfromtherowcontainingtheevenpolynomialdowntotheendoftheRouthtableisatestofonlytheevenroots([1,1,-6,0,-1,----0.0000+roots([1,1,-6,0,-1,----0.0000+-0.0000-StabilitydefinitionforlinearsystemsfromStabilitydefinitionforlinearsystemsfromtheviewpointofnatural–––Stable:Naturalresponsedecaystozeroastimeapproachesinfinity;Unstable:Naturalresponseincreaseswithoutbound;Margin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論