版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省運城市芮城縣三校2024屆學業(yè)質量調研抽測(第三次5月)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.2.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.23.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數大于13340萬人次D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差4.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形5.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.327.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.8.關于圓周率π,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統(tǒng)計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統(tǒng)計數估計的值,那么可以估計的值約為()A. B. C. D.9.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或10.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或11.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.412.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,項的系數是__________.14.設為等比數列的前項和,若,且,,成等差數列,則.15.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.16.下圖是一個算法流程圖,則輸出的S的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為以為極點,軸正半軸為極軸建立極坐標系,設點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.18.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.19.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.20.(12分)某房地產開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.21.(12分)已知函數.(1)證明:當時,;(2)若函數只有一個零點,求正實數的值.22.(10分)已知函數(為實常數).(1)討論函數在上的單調性;(2)若存在,使得成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖2、A【解題分析】
設,用表示出,求出的值即可得出答案.【題目詳解】設由,,.故選:A【題目點撥】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.3、D【解題分析】
ABD可通過統(tǒng)計圖直接分析得出結論,C可通過計算中位數判斷選項是否正確.【題目詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數應為與的平均數,大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【題目點撥】本題考查統(tǒng)計圖表信息的讀取以及對中位數和方差的理解,難度較易.處理問題的關鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.4、B【解題分析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【題目詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【題目點撥】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.5、A【解題分析】
由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【題目詳解】因為,所以,所以復數的虛部為.故選A.【題目點撥】本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.6、A【解題分析】
根據三視圖,還原空間幾何體,即可得該幾何體的體積.【題目詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【題目點撥】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.7、C【解題分析】
根據程序框圖依次計算得到答案.【題目詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【題目點撥】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.8、D【解題分析】
由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【題目詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區(qū)域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【題目點撥】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.9、D【解題分析】
設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【題目詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【題目點撥】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.10、B【解題分析】
根據三角函數的定義求得后可得結論.【題目詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【題目點撥】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.11、D【解題分析】可以是共4個,選D.12、C【解題分析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.二、填空題:本題共4小題,每小題5分,共20分。13、240【解題分析】
利用二項式展開式的通項公式,令x的指數等于3,計算展開式中含有項的系數即可.【題目詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【題目點撥】本題主要考查二項式展開式的通項公式及簡單應用,相對不難.14、.【解題分析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.15、60【解題分析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.16、【解題分析】
根據流程圖,運行程序即得.【題目詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【題目點撥】本題考查算法流程圖,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】
(1)利用極坐標和直角坐標的互化公式,即得解;(2)設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【題目詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標是,從而,點的極坐標是.(2)由(1)可知,點的直角坐標為,B的直角坐標為設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【題目點撥】本題考查了極坐標和參數方程綜合,考查了極坐標和直角坐標互化,參數方程的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.18、(1)曲線的普通方程為;直線的直角坐標方程為(2)【解題分析】
(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【題目詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【題目點撥】本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ).【解題分析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【題目詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【題目點撥】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20、(1),;(2)米.【解題分析】
(1)過點作于點再在中利用正弦定理求解,再根據求解,進而求得.再根據確定的范圍即可.(2)根據(1)有,再設,求導分析函數的單調性與最值即可.【題目詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調遞增;當時,單調遞減,又,當時,取最大值,此時,的最大值為米.【題目點撥】本題主要考查了三角函數在實際中的應用,需要根據題意建立角度與長度間的關系,進而求導分析函數的單調性,根據三角函數值求解對應的最值即可.屬于難題.21、(1)證明見解析;(2).【解題分析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數求證即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 2017年12月環(huán)境管理體系基礎答案及解析 - 詳解版(80題)
- CCAA - 2015服務標準化與服務認證答案及解析 - 詳解版(77題)
- 企業(yè)員工培訓與技能發(fā)展路徑目標制度
- 人教版(2026)八年級下冊英語寒假預習講義(含練習題及答案)
- 老年終末期認知障礙非藥物干預策略
- 老年終末期患者跌倒預防的循證護理方案
- T∕SMA 0081-2025 船舶油水計量系統(tǒng)測試方法
- 2025年長沙瀏陽市人民醫(yī)院招聘筆試真題
- 貴金屬回收提純工安全素養(yǎng)測試考核試卷含答案
- 衛(wèi)星通信機務員操作水平競賽考核試卷含答案
- CJ/T 164-2014節(jié)水型生活用水器具
- 購銷合同范本(塘渣)8篇
- 貨車充電協議書范本
- 屋面光伏設計合同協議
- 生鮮業(yè)務采購合同協議
- 夫妻門衛(wèi)合同協議
- 公司雙選工作方案
- GB/T 4340.2-2025金屬材料維氏硬度試驗第2部分:硬度計的檢驗與校準
- 銷售合同評審管理制度
- 泳池突發(fā)安全事故應急預案
- 村財務管理制度
評論
0/150
提交評論