付費下載
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
小波域的數(shù)字調(diào)制信號識別及碼速率估計的中期報告LITERATUREREVIEWInrecentyears,theuseofwavelettransformfordigitalsignalprocessinghasbecomeincreasinglypopularduetoitsabilitytoanalyzesignalsinbothtimeandfrequencydomainsimultaneouslyanditsabilitytocapturebothshort-termandlong-termbehaviorofsignals.Inparticular,wavelettransformhasbeenusedformodulationrecognitionandsignalclassificationinvariouscommunicationsystems.Modulationrecognitionisanimportanttaskinmanysignalprocessingapplications,includingradar,wirelesscommunication,andsatellitecommunication.Itinvolvesidentifyingthemodulationparametersofareceivedsignal,suchasmodulationscheme,carrierfrequency,andsymbolrate.Therearevariousmethodsformodulationrecognition,suchasstatisticalclassifiers,artificialneuralnetworks,andsupportvectormachines.However,thesemethodsrequireconsiderablecomputationalresourcesandmaysufferfromoverfittingandlimitedaccuracy.Recently,wavelettransformhasbeenusedformodulationrecognitionduetoitsabilitytocapturethefrequencyandtime-varyingnatureofsignals.Inparticular,waveletpackettransform(WPT)hasbeenusedtoextractrelevantfeaturesfromthesignalformodulationrecognition.Theextractedfeaturesarethenusedasinputstomachinelearningalgorithmsforclassification.Anotherimportanttaskindigitalsignalprocessingistheestimationofthesymbolrateofareceivedsignal.Symbolrateestimationiscriticalinvariouscommunicationsystems,asitenablessynchronizationbetweenthetransmitterandreceiver.Therearevarioustechniquesforsymbolrateestimation,includingautocorrelationandmaximumlikelihoodestimators.However,thesetechniquesmaysufferfrompoorperformanceinnoisyandmultipathchannels.Wavelettransformhasbeenusedforsymbolrateestimationduetoitsabilitytocapturethetime-varyingnatureofsignals.Inparticular,continuouswavelettransform(CWT)andWPThavebeenusedforsymbolrateestimationinvariouscommunicationsystems.Theextractedfeaturesfromthewavelettransformareusedtoestimatethesymbolrateusingmaximumlikelihoodorautocorrelation-basedtechniques.PROBLEMSTATEMENTInthisproject,weaimtodevelopasystemformodulationrecognitionandsymbolrateestimationofdigitalsignalsinthewaveletdomain.Thesystemwillconsistofthefollowingcomponents:1.Wavelettransform:Thereceivedsignalwillbeanalyzedusingwavelettransformtoextracttherelevantfeatures.2.Featureextraction:TherelevantfeatureswillbeextractedfromthewaveletcoefficientsusingWPT.3.Modulationrecognition:Theextractedfeatureswillbeusedformodulationrecognitionusingmachinelearningalgorithmssuchassupportvectormachines,decisiontrees,andk-nearestneighbors.4.Symbolrateestimation:Theextractedfeatureswillbeusedforsymbolrateestimationusingmaximumlikelihoodorautocorrelation-basedtechniques.Thesystemwillbetestedonvariousdigitalsignalswithdifferentmodulationschemesandsymbolratesinordertoevaluateitsperformance.METHODOLOGYTheoverallmethodologyforthisprojectcanbedividedintothefollowingsteps:1.Datacollection:Digitalsignalswithdifferentmodulationschemesandsymbolrateswillbecollectedusingasoftware-definedradioreceiver.2.Wavelettransform:Thereceivedsignalswillbeanalyzedusingwavelettransformtoextracttherelevantfeatures.3.Featureextraction:TherelevantfeatureswillbeextractedfromthewaveletcoefficientsusingWPT.4.Modulationrecognition:Theextractedfeatureswillbeusedformodulationrecognitionusingmachinelearningalgorithmssuchassupportvectormachines,decisiontrees,andk-nearestneighbors.5.Symbolrateestimation:Theextractedfeatureswillbeusedforsymbolrateestimationusingmaximumlikelihoodorautocorrelation-basedtechniques.6.Evaluation:Theperformanceofthesystemwillbeevaluatedbycalculatingtheaccuracyofmodulationrecognitionandsymbolrateestimationonthetestsignals.EXPECTEDOUTCOMESTheexpectedoutcomesofthisprojectareasfollows:1.Developmentofasystemformodulationrecognitionandsymbolrateestimationofdigitalsignalsinthewaveletdomain.2.Evaluationoftheperformanceoftheproposedsystemonvariousdigitalsignalswithdifferentmodulationschemesandsymbolrates.3.Identificationofthemosteffective
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省十堰市東風第五中學2025-2026學年七年級上學期10月月考數(shù)學試卷(含答案)
- 2025-2026學年廣東省揭陽市普寧市九年級(上)期末數(shù)學試卷(含答案)
- 微生物考試題及答案
- 2022公司員工年度工作總結(jié)(5篇)
- 七年級道德與法治(上冊)期中試卷及參考答案
- 班務工作總結(jié)(20篇)
- 讓生活更美好多彩的作文
- 復合鋼結(jié)構(gòu)技術(shù)發(fā)展要點
- 單位工程驗收技術(shù)方法
- 機械制圖試題
- 河南省2025年普通高等學校對口招收中等職業(yè)學校畢業(yè)生考試語文試題 答案
- 冬季道路施工應對措施
- 云南省昆明市官渡區(qū)2024-2025學年九年級上學期期末學業(yè)質(zhì)量監(jiān)測英語試題(含答案)
- 企業(yè)員工培訓分層方案
- 體檢中心新員工培訓教材
- 衛(wèi)生院綜合樓施工組織設計
- 淮安市2022-2023學年七年級上學期期末歷史試題【帶答案】
- 腦動脈供血不足的護理查房
- 《中醫(yī)藥健康知識講座》課件
- 中國地級市及各省份-可編輯標色地圖
- 急性消化道出血的急診處理
評論
0/150
提交評論