高考數(shù)學一輪復(fù)習-1-1集合及其運算課件-理_第1頁
高考數(shù)學一輪復(fù)習-1-1集合及其運算課件-理_第2頁
高考數(shù)學一輪復(fù)習-1-1集合及其運算課件-理_第3頁
高考數(shù)學一輪復(fù)習-1-1集合及其運算課件-理_第4頁
高考數(shù)學一輪復(fù)習-1-1集合及其運算課件-理_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第1講集合及其運算考試要求1.集合的含義、元素與集合的屬于關(guān)系,A級要求;2.集合之間包含與相等的含義,集合的子集,B級要求;3.并集、交集、補集的含義,用韋恩(Venn)圖表述集合關(guān)系,B級要求;4.求兩個簡單集合的并集與交集及求給定子集的補集,B級要求.知

理1.元素與集合 (1)集合中元素的三個特征:確定性、

、無序性. (2)元素與集合的關(guān)系是

關(guān)系,用符號

表示. (3)集合的表示法:列舉法、

、圖示法.互異性屬于不屬于∈?描述法2.集合間的基本關(guān)系表示關(guān)系文字語言符號語言集合間的基本關(guān)系相等集合A與集合B中的所有元素都相同A=B子集A中任意一個元素均為B中的元素

.真子集A中任意一個元素均為B中的元素,且B中至少有一個元素不是A中的元素

.空集空集是任何集合的

,是任何非空集合的真子集A?B子集3.集合的基本運算集合的并集集合的交集集合的補集圖形語言符號語言A∪B=

.A∩B=

.?UA=

.{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x?A}4. 集合的運算性質(zhì) 并集的性質(zhì): A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?

. 交集的性質(zhì): A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?

. 補集的性質(zhì): A∪(?UA)=

;A∩(?UA)=

;?U(?UA)=

.B?AA?BU?A×

×

×

2.(2014·新課標全國Ⅰ卷改編)已知集合M={x|-1<x<3},N={x|-2<x<1},則M∩N=________.

解析借助數(shù)軸求解. 由圖知:M∩N=(-1,1). 答案(-1,1)3.(2014·遼寧卷改編)已知全集U=R,A={x|x≤0},B={x|x≥1},則集合?U(A∪B)=________. 解析借助數(shù)軸求得:A∪B={x|x≤0,或x≥1}, ∴?U(A∪B)={x|0<x<1}. 答案{x|0<x<1}4.(蘇教版必修1P14T11改編)已知集合A={x|3≤x<7},B={x|2<x<10},則(?RA)∩B=________.

解析∵?RA={x|x<3,或x≥7}, ∴(?RA)∩B={x|2<x<3,或7≤x<10}. 答案{x|2<x<3,或7≤x<10}5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},則A∩B的元素個數(shù)為________.

解析集合A表示的是圓心在原點的單位圓,集合B表示的是直線y=x,據(jù)此畫出圖象,可得圖象有兩個交點,即A∩B的元素個數(shù)為2.

答案2考點一集合的含義【例1】(1)已知集合A={0,1,2},則集合B={x-y|x∈A,y∈A}中元素的個數(shù)是________. (2)若集合A={x∈R|ax2+ax+1=0}中只有一個元素,則a=________. 解析(1)∵x-y={-2,-1,0,1,2},∴其元素個數(shù)為5. (2)由ax2+ax+1=0只有一個實數(shù)解,可得當a=0時,方程無實數(shù)解; 當a≠0時,則Δ=a2-4a=0, 解得a=4(a=0不合題意舍去). 答案(1)5

(2)4規(guī)律方法

(1)用描述法表示集合,首先要搞清楚集合中代表元素的含義,再看元素的限制條件,明白集合的類型,是數(shù)集、點集還是其他類型集合.(2)集合中元素的三個特性中的互異性對解題的影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.答案1考點二集合間的基本關(guān)系【例2】(1)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B?A,則實數(shù)m的取值范圍為__________. (2)設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B=?,則m=__________. 解析(1)當B=?時,有m+1≥2m-1,則m≤2. 當B≠?時,若B?A,如圖.深度思考

①你會用這些結(jié)論嗎?A∪B=A?B?A,A∩B=A?A?B,(?UA)∩B=??B?A;②你考慮到空集了嗎?

(2)A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判別式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},則m=1;②若B={-2},則應(yīng)有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,這兩式不能同時成立,∴B≠{-2};③若B={-1,-2},則應(yīng)有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由這兩式得m=2.經(jīng)檢驗知m=1和m=2符合條件.∴m=1或2.答案(1)(-∞,4]

(2)1或2規(guī)律方法

(1)空集是任何集合的子集,在涉及集合關(guān)系時,必須優(yōu)先考慮空集的情況,否則會造成漏解.(2)已知兩個集合間的關(guān)系求參數(shù)時,關(guān)鍵是將條件轉(zhuǎn)化為元素或區(qū)間端點間的關(guān)系,進而轉(zhuǎn)化為參數(shù)所滿足的關(guān)系.常用數(shù)軸、Venn圖來直觀解決這類問題.答案(1)0

(2)(4,+∞)考點三集合的基本運算【例3】(1)(2014·新課標全國Ⅱ卷改編)已知集合A={-2,0,2},B={x|x2-x-2=0},則A∩B=________. (2)(2014·江西卷改編)設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(?RB)=________.解析(1)B={x|x2-x-2=0}={-1,2},A={-2,0,2},∴A∩B={2}.(2)∵A={x|x2-9<0}={x|-3<x<3},B={x|-1<x≤5},∴?RB={x|x≤-1或x>5},∴A∩(?RB)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.答案(1){2}

(2)(-3,-1]規(guī)律方法

(1)一般來講,集合中的元素若是離散的,則用Venn圖表示;集合中的元素若是連續(xù)的實數(shù),則用數(shù)軸表示,此時要注意端點的情況.(2)運算過程中要注意集合間的特殊關(guān)系的使用,靈活使用這些關(guān)系,會使運算簡化.【訓練3】(1)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(?UA)∪B=________. (2)(2014·四川卷改編)已知集合A={x|(x+1)(x-2)≤0},集合B為整數(shù)集,則A∩B=________. 解析(1)?UA={0,4},∴(?UA)∪B={0,2,4}. (2)∵A={x|-1≤x≤2},B為整數(shù)集, ∴A∩B={-1,0,1,2}.

答案(1){0,2,4}

(2){-1,0,1,2}微型專題集合背景下的新定義問題 以集合為背景的新定義問題,集合只是一種表述形式,實質(zhì)上考查的是考生接受新信息、理解新情境、解決新問題的數(shù)學能力.解決此類問題,要從以下兩點入手: (1)正確理解創(chuàng)新定義.分析新定義的表述意義,把新定義所表達的數(shù)學本質(zhì)弄清楚,進而轉(zhuǎn)化成熟知的數(shù)學情境,并能夠應(yīng)用到具體的解題之中,這是解決問題的基礎(chǔ).(2)合理利用集合性質(zhì).運用集合的性質(zhì)(如元素的性質(zhì)、集合的運算性質(zhì)等)是破解新定義型集合問題的關(guān)鍵.在解題時要善于從題設(shè)條件給出的數(shù)式中發(fā)現(xiàn)可以使用集合性質(zhì)的一些因素,但關(guān)鍵之處還是合理利用集合的運算與性質(zhì). 點撥先理解集合的“長度”,然后求M∩N的“長度”的最小值.點評本題的難點是理解集合的“長度”,解題時緊扣新定義與基礎(chǔ)知識之間的相互聯(lián)系,把此類問題轉(zhuǎn)化成熟悉的問題進行求解.[思想方法]1.在解題時經(jīng)常用到集合元素的互異性,一方面利用集合元素的互異性能順利找到解題的切入點;另一方面,在解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論