版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省池州市高考沖刺模擬數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.22.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個交點(diǎn)連線正好過點(diǎn),則橢圓的離心率為()A. B. C. D.3.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.604.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.5.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.6.已知集合,,則=()A. B. C. D.7.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知集合,,則等于()A. B. C. D.9.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.10.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知拋物線的焦點(diǎn)為,是拋物線上兩個不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.212.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長介于與之間的概率為__________.14.已知正項(xiàng)等比數(shù)列中,,則__________.15.在邊長為的菱形中,點(diǎn)在菱形所在的平面內(nèi).若,則_____.16.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某單位準(zhǔn)備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨(dú)購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.每臺設(shè)備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.(1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.19.(12分)在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.(1)求動點(diǎn)的軌跡的方程;(2)若點(diǎn)是圓上一動點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.20.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.21.(12分)已知拋物線Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點(diǎn)A(3,﹣2)的直線交拋物線Γ于M,N兩點(diǎn),經(jīng)過定點(diǎn)B(3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問直線NL是否恒過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn),否則說明理由.22.(10分)根據(jù)國家統(tǒng)計(jì)局?jǐn)?shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實(shí)際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計(jì)圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計(jì)2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.參考數(shù)據(jù):45678的近似值5514840310972981
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題3、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題4、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會大大增加,甚至沒法求解.6、C【解析】
計(jì)算,,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計(jì)算能力.7、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)椋杂薪?,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)?,所以的解集包含,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,8、B【解析】
解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.9、D【解析】
根據(jù)面面垂直的判定定理,對選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點(diǎn)睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.10、D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對應(yīng)點(diǎn)即可判斷.【詳解】,故其對應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.11、D【解析】
由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.12、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.14、【解析】
利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.15、【解析】
以菱形的中心為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,再設(shè),根據(jù)求出的坐標(biāo),進(jìn)而求得即可.【詳解】解:連接設(shè)交于點(diǎn)以點(diǎn)為原點(diǎn),分別以直線為軸,建立如圖所示的平面直角坐標(biāo)系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解向量數(shù)量積的有關(guān)問題,屬于中檔題.16、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)應(yīng)該購買21件易耗品【解析】
(1)由統(tǒng)計(jì)表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨(dú)立事件概率公式進(jìn)而求解即可;(2)由題可得X所有可能的取值為,即可求得對應(yīng)的概率,再分別討論該單位在購買設(shè)備時應(yīng)同時購買20件易耗品和21件易耗品時總費(fèi)用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設(shè)備一個月使用易耗品的件數(shù)為6和7的頻率均為;B型號的設(shè)備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號的設(shè)備一個月使用易耗品的件數(shù)為7和8的頻率分別為;設(shè)該單位一個月中三臺設(shè)備使用易耗品的件數(shù)分別為,則,,,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,則而,,故,即該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設(shè)備的同時購買了20件易耗品,設(shè)該單位一個月中購買易耗品所需的總費(fèi)用為元,則的所有可能取值為,;;;;;若該單位在肋買設(shè)備的同時購買了21件易耗品,設(shè)該單位一個月中購買易耗品所需的總費(fèi)用為元,則的所有可能取值為,;;;;,所以該單位在購買設(shè)備時應(yīng)該購買21件易耗品【點(diǎn)睛】本題考查獨(dú)立事件的概率,考查離散型隨機(jī)變量的分布列和期望,考查數(shù)據(jù)處理能力.18、(1);(2)面積的最小值為;四邊形的面積為【解析】
(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;(2)由(1)得曲線的極坐標(biāo)方程,設(shè),,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進(jìn)而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標(biāo)方程為,即,所以,曲線的直角坐標(biāo)方程.(2)依題意得的極坐標(biāo)方程為設(shè),,,則,,故,當(dāng)且僅當(dāng)(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點(diǎn)睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.19、(1);(2)【解析】
(1)設(shè),根據(jù)題意可得點(diǎn)的軌跡方程滿足的等式,化簡即可求得動點(diǎn)的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點(diǎn),,點(diǎn),則可得過點(diǎn)的拋物線的切線方程為,聯(lián)立拋物線方程并化簡,由相切時可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點(diǎn)滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設(shè)點(diǎn),∵點(diǎn)到直線的距離等于,∴,化簡得,∴動點(diǎn)的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設(shè)為,切點(diǎn),,設(shè)點(diǎn),過點(diǎn)的拋物線的切線方程為,聯(lián)立,化簡可得,∴,即,∴,.由,求得導(dǎo)函數(shù),∴,,,∴,因?yàn)辄c(diǎn)滿足,由圓的性質(zhì)可得,∴,即直線斜率的取值范圍為.【點(diǎn)睛】本題考查了動點(diǎn)軌跡方程的求法,直線與拋物線相切的性質(zhì)及應(yīng)用,導(dǎo)函數(shù)的幾何意義及應(yīng)用,點(diǎn)和圓位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.20、(1)見解析;(2).【解析】
(1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時,轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)椋?,所以,存在使得,即.所以,?dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),故當(dāng)時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時,為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時,有兩個不同的零點(diǎn),,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為.注意到時,,且此時,(?。┊?dāng)時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時,,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算能力,屬于較難題.21、(1)y2=4x;;(2)直線NL恒過定點(diǎn)(﹣3,0),理由見解析.【解析】
(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北工業(yè)大學(xué)《創(chuàng)業(yè)指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東交通學(xué)院《急救》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波財經(jīng)學(xué)院《工程攝影測量》2023-2024學(xué)年第二學(xué)期期末試卷
- 濰坊醫(yī)學(xué)院《切削原理與刀具》2023-2024學(xué)年第二學(xué)期期末試卷
- 平頂山工業(yè)職業(yè)技術(shù)學(xué)院《健身氣功》2023-2024學(xué)年第二學(xué)期期末試卷
- 醫(yī)院臨床技能培訓(xùn)方案
- 建筑材料樣品管理與測試流程
- 2026年環(huán)保材料公司技術(shù)人員等級評定管理制度
- 江門職業(yè)技術(shù)學(xué)院《公司治理學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西農(nóng)業(yè)職業(yè)技術(shù)大學(xué)《植物生物學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 體外循環(huán)心臟手術(shù)配合
- 鋼管運(yùn)輸方案
- 企業(yè)訴訟案件管理辦法
- 給醫(yī)生感謝信又短又好(5篇)
- 濕疹 (中醫(yī)院皮膚科)
- 實(shí)驗(yàn)室儀器設(shè)備驗(yàn)收單
- 智能照明系統(tǒng)調(diào)試記錄
- 關(guān)于若干歷史問題的決議(1945年)
- 畢業(yè)論文8000字【6篇】
- 隨訪管理系統(tǒng)功能參數(shù)
- 探究應(yīng)用新思維七年級數(shù)學(xué)練習(xí)題目初一
評論
0/150
提交評論