南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

南京市秦淮區(qū)四校2024屆八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.多項式4x2﹣4與多項式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)22.如圖,菱形的邊長為2,∠ABC=45°,則點D的坐標(biāo)為()A.(2,2) B.(2+,) C.(2,) D.(,)3.如圖在?ABCD中,已知AC=4cm,若△ACD的周長為13cm,則?ABCD的周長為()A.26cm B.24cm C.20cm D.18cm4.下列各點中,在反比例函數(shù)的圖象上的點是()A. B. C. D.5.如圖,平行四邊形ABCD的對角線交于點O,且AB=6,ΔOCD的周長為25,則平行四邊形ABCD的兩條對角線的和是()A.18 B.28 C.38 D.466.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.57.如圖:一個長、寬、高分別為4cm、3cm、12cm的長方體盒子能容下的最長木棒長為()A.11cmB.12cmC.13cmD.14cm8.如圖,AD、BE分別是的中線和角平分線,,,F(xiàn)為CE的中點,連接DF,則AF的長等于()A.2 B.3 C. D.9.如圖,四邊形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,則AE等于()A.4 B. C. D.510.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大?。渲袝S點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤11.如圖,在?ABCD中,∠C=130°,BE平分∠ABC,則∠AEB等于()A. B. C. D.12.用配方法解一元二次方程x2+4x+1=0,下列變形正確的是()A.(x﹣2)2﹣3=0 B.(x+4)2=15 C.(x+2)2=15 D.(x+2)2=3二、填空題(每題4分,共24分)13.函數(shù)的自變量的取值范圍是.14.反比例函數(shù)與一次函數(shù)圖象的交于點,則______.15.有一種細(xì)菌的直徑約為0.000000054米,將0.000000054這個數(shù)用科學(xué)記數(shù)法表示為____.16.分解因式:.17.將一根長為15cm的筷子置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長為hcm,則h的取值范圍是_____.18.如圖,小明作出了邊長為2的第1個正△,算出了正△的面積.然后分別取△的三邊中點、、,作出了第2個正△,算出了正△的面積;用同樣的方法,作出了第3個正△,算出了正△的面積,由此可得,第2個正△的面積是__,第個正△的面積是__.三、解答題(共78分)19.(8分)為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:甲、乙射擊成績統(tǒng)計表平均數(shù)中位數(shù)方差命中10環(huán)的次數(shù)甲7乙1(1)請補全上述圖表(請直接在表中填空和補全折線圖);(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?20.(8分)A、B、C三名大學(xué)生競選系學(xué)生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計,如表和圖1:競選人ABC筆試859590口試8085(1)請將表和圖1中的空缺部分補充完整.(2)競選的最后一個程序是由本系的200名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖2(沒有棄權(quán)票,每名學(xué)生只能推薦一個),則A在扇形統(tǒng)計圖中所占的圓心角是度.(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4:4:2的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當(dāng)選.21.(8分)如圖1,在正方形ABCD中,P是對角線BD上的點,點E在AB上,且PA=PE.(1)求證:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說明理由.22.(10分)電話計費問題,下表中有兩種移動電話計費方式:溫馨揭示:方式一:月使用費固定收(月收費:38元/月);主叫不超限定時間不再收費(80分鐘以內(nèi),包括80分鐘);主叫超時部分加收超時費(超過部分0.15元/);被叫免費。方式二:月使用費0元(無月租費);主叫限定時間0分鐘;主叫每分鐘0.35元/;被叫免費。(1)設(shè)一個月內(nèi)用移動電話主叫時間為,方式一計費元,方式二計費元。寫出和關(guān)于的函數(shù)關(guān)系式。(2)在平面直角坐標(biāo)系中畫出(1)中的兩個函數(shù)圖象,記兩函數(shù)圖象交點為點,則點的坐標(biāo)為_____________________(直接寫出坐標(biāo),并在圖中標(biāo)出點)。(3)根據(jù)(2)中函數(shù)圖象,請直接寫出如何根據(jù)每月主叫時間選擇省錢的計費方式。23.(10分)菱形ABCD在平面直角坐標(biāo)系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:(1)求點D的坐標(biāo);(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k=;(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.24.(10分)如圖,直線與坐標(biāo)軸交于點、兩點,直線與直線相交于點,交軸于點,且的面積為.(1)求的值和點的坐標(biāo);(2)求直線的解析式;(3)若點是線段上一動點,過點作軸交直線于點,軸,軸,垂足分別為點、,是否存在點,使得四邊形為正方形,若存在,請求出點坐標(biāo),若不存在,請說明理由.25.(12分)已知:如圖所示,菱形中,于點,且為的中點,已知,求菱形的周長和面積.26.如圖,已知正比例函數(shù)經(jīng)過點.(1)求這個正比例函數(shù)的解析式;(2)該直線向上平移4個單位,求平移后所得直線的解析式.

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:分別將多項式與多項式進(jìn)行因式分解,再尋找他們的公因式.本題解析:多項式:,多項式:,則兩多項式的公因式為x-1.故選A.2、B【解析】

根據(jù)坐標(biāo)意義,點D坐標(biāo)與垂線段有關(guān),過點D向X軸垂線段DE,則OE、DE長即為點D坐標(biāo).【詳解】過點D作DE⊥x軸,垂足為E,則∠CED=90°,∵四邊形ABCD是菱形,∴AB//CD,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE,∴CE=DE,在Rt△CDE中,CD=2,CD2+DE2=CD2,∴CE=DE=,∴OE=OC+CE=2+,∴點D坐標(biāo)為(2+,2),故選B.【點睛】本題考查了坐標(biāo)與圖形性質(zhì)、菱形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理等,正確添加輔助線是解題的關(guān)鍵.3、D【解析】

根據(jù)三角形周長的定義得到AD+DC=9cm.然后由平行四邊形的對邊相等的性質(zhì)來求平行四邊形的周長.【詳解】解:∵AC=4cm,若△ADC的周長為13cm,∴AD+DC=13﹣4=9(cm).又∵四邊形ABCD是平行四邊形,∴AB=CD,AD=BC,∴平行四邊形的周長為2(AB+BC)=18cm.故選D.4、A【解析】

根據(jù)反比例函數(shù)解析式可得xy=6,然后對各選項分析判斷即可得解.【詳解】解:∵,∴xy=6,A、∵2×3=6,∴點(2,3)在反比例函數(shù)圖象上,故本選項正確;B、∵1×4=4≠6,∴點(1,4)不在反比例函數(shù)圖象上,故本選項錯誤;C、∵-2×3=-6≠6,∴點(-2,3)不在反比例函數(shù)圖象上,故本選項錯誤;D、∵-1×4=-4≠6,∴點(-1,4)不在反比例函數(shù)圖象上,故本選項錯誤.故選:A.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,所有在反比例函數(shù)上的點的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).5、C【解析】

由平行四邊形的性質(zhì)和已知條件計算即可,解題注意求平行四邊形ABCD的兩條對角線的和時要把兩條對角線作為一個整體求出.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD=6,∵△OCD的周長為25,∴OD+OC=25?6=19,∵BD=2OD,AC=2OC,∴?ABCD的兩條對角線的和BD+AC=2(OD+OC)=1.故選:C.【點睛】本題主要考查了平行四邊形的基本性質(zhì),并利用性質(zhì)解題.平行四邊形的基本性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.6、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運用數(shù)形結(jié)合的思想.7、C【解析】試題分析:∵側(cè)面對角線BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大長度為13m,故選C.考點:勾股定理的應(yīng)用.8、D【解析】

已知AD是的中線,F(xiàn)為CE的中點,可得DF為△CBE的中位線,根據(jù)三角形的中位線定理可得DF∥BE,DF=BE=2;又因,可得∠BOD=90°,由平行線的性質(zhì)可得∠ADF=∠BOD=90°,在Rt△ADF中,根據(jù)勾股定理即可求得AF的長.【詳解】∵AD是的中線,F(xiàn)為CE的中點,∴DF為△CBE的中位線,∴DF∥BE,DF=BE=2;∵,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴AF=.故選D.【點睛】本題考查了三角形的中位線定理及勾股定理,利用三角形的中位線定理求得DF∥BE,DF=BE=2是解決問題的關(guān)鍵.9、C【解析】

連接BD,根據(jù)菱形的性質(zhì)可得AC⊥BD,AO=AC,然后根據(jù)勾股定理計算出BO長,再算出菱形的面積,然后再根據(jù)面積公式BC?AE=AC?BD可得答案.【詳解】解:連接BD,交AC于O點,

∵四邊形ABCD是菱形,

∴AB=BC=CD=AD=5,

∴AC⊥BD,AO=AC,BD=2BO,

∴∠AOB=90°,

∵AC=6,

∴AO=3,

∴BO=,∴DB=8,

∴菱形ABCD的面積是×AC?DB=×6×8=24,

∴BC?AE=24,

AE=,故選C.【點睛】此題主要考查了菱形的性質(zhì),以及菱形的性質(zhì)面積,關(guān)鍵是掌握菱形的對角線互相垂直且平分.10、B【解析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線11、D【解析】

由平行四邊形ABCD中,∠C=130°,可求得∠ABC的度數(shù),又由BE平分∠ABC,即可求得∠CBE的度數(shù),然后由平行線的性質(zhì),求得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=130°,∴∠ABC=180°-∠C=50°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠AEB=∠CBE=25°.故選D.【點睛】此題考查了平行四邊形的性質(zhì),屬于基礎(chǔ)題,解答本題的關(guān)鍵是掌握平行四邊形鄰角互補的性質(zhì),難度一般.12、D【解析】

移項、配方,即可得出選項.【詳解】,,,.故選.【點睛】本題考查了解一元二次方程,能正確配方是解此題的關(guān)鍵.二、填空題(每題4分,共24分)13、x>1【解析】

解:依題意可得,解得,所以函數(shù)的自變量的取值范圍是14、-1【解析】試題分析:將點A(-1,a)代入一次函數(shù)可得:-1+2=a,則a=1,將點A(-1,1)代入反比例函數(shù)解析式可得:k=1×(-1)=-1.考點:待定系數(shù)法求反比例函數(shù)解析式15、5.4×【解析】

絕對值<1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.000000054這個數(shù)用科學(xué)記數(shù)法表示為5.4×10故答案為:5.4×【點睛】考查科學(xué)記數(shù)法,掌握絕對值小于1的數(shù)的表示方法是解題的關(guān)鍵.16、.【解析】

先把式子寫成x2-22,符合平方差公式的特點,再利用平方差公式分解因式.【詳解】x2-4=x2-22=(x+2)(x-2).故答案為.【點睛】此題考查的是利用公式法因式分解,因式分解的步驟為:一提公因式;二看公式.17、2cm≤h≤3cm【解析】

解:根據(jù)直角三角形的勾股定理可知筷子最長在水里面的長度為13cm,最短為12cm,則筷子露在外面部分的取值范圍為:.故答案為:2cm≤h≤3cm【點睛】本題主要考查的就是直角三角形的勾股定理的實際應(yīng)用問題.在解決“竹竿過門”、立體圖形中最大值的問題時,我們一般都會采用勾股定理來進(jìn)行說明,從而得出答案.我們在解決在幾何體中求最短距離的時候,我們一般也是將立體圖形轉(zhuǎn)化為平面圖形,然后利用勾股定理來進(jìn)行求解.18、,【解析】

根據(jù)等邊三角形的性質(zhì)求出正△A1B1C1的面積,根據(jù)三角形中位線定理得到,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】正△的邊長,正△的面積,點、、分別為△的三邊中點,,,,△△,相似比為,△與△的面積比為,正△的面積為,則第個正△的面積為,故答案為:;.【點睛】本題考查的是三角形中位線定理、相似三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)甲勝出;(3)見解析.【解析】試題分析:(1)根據(jù)折線統(tǒng)計圖列舉出乙的成績,計算出甲的中位數(shù),方差,以及乙平均數(shù),中位數(shù)及方差,補全即可;

(2)計算出甲乙兩人的方差,比較大小即可做出判斷;

(3)希望甲勝出,規(guī)則改為9環(huán)與10環(huán)的總數(shù)大的勝出,因為甲9環(huán)與10環(huán)的總數(shù)為4環(huán).試題解析:(1)如圖所示.甲、乙射擊成績統(tǒng)計表平均數(shù)中位數(shù)方差命中10環(huán)的次數(shù)甲7740乙77.55.41(2)由甲的方差小于乙的方差,甲比較穩(wěn)定,故甲勝出.(3)如果希望乙勝出,應(yīng)該制定的評判規(guī)則為:平均成績高的勝出;如果平均成績相同,則隨著比賽的進(jìn)行,發(fā)揮越來越好者或命中滿環(huán)(10環(huán))次數(shù)多者勝出.因為甲、乙的平均成績相同,隨著比賽的進(jìn)行,乙的射擊成績越來越好(回答合理即可).20、(1)表格數(shù)據(jù)90,圖見解析;(2)126°;(3)B當(dāng)選,理由見解析.【解析】試題分析:(1)由條形統(tǒng)計圖可知,A的口試成績?yōu)?0分,填入表中即可;(2)由圖2中A所占的百分比為35%可知,在圖2中A所占的圓心角為:360°×35%;(3)按:最后成績=筆試成績×40%+口試成績×40%+得票成績×20%分別計算出三人的成績,再看誰的成績最高,即可得到本題答案.試題解析:(1)由條形統(tǒng)計圖可知:A的口試成績?yōu)?0分,填入表格如下:競選人ABC筆試859590口試908085(2)由圖2可知,A所占的百分比為35%,∴在圖2中,A所占的圓心角為:360°×35%=126°;(3)由題意可知:A的最后得分為:85×40%+90×40%+200×35%×20%=84(分),B的最后得分為:95×40%+80×40%+200×40%×20%=86(分),C的最后得分為:90×40%+85×40%+200×25%×20%=80(分),∵86>84>80,∴根據(jù)成績可以判定B當(dāng)選.21、(1)見解析;(2)∠EPC=90°;(3)∠ABC+∠EPC=180°.【解析】

試題分析:(1)先證出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,進(jìn)而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結(jié)論;(3)借助(1)和(2)的證明方法容易證明結(jié)論.(1)證明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°;(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.考點:全等三角形的判定與性質(zhì);正方形的性質(zhì).22、(1)當(dāng)時,,當(dāng)時,,;(2)點的坐標(biāo)為,見解析;(3)當(dāng)每月主叫時間小于130分鐘時選擇方式二省錢;當(dāng)每月主叫時間等于130分鐘時兩種方式都一樣;當(dāng)每月主叫時間大于130分鐘時選擇方式一省錢.【解析】

(1)根據(jù)題意即可寫出兩種資費的關(guān)系式;(2)根據(jù)列表、描點、連線即可畫出函數(shù)圖像,再求出交點坐標(biāo)A;(3)根據(jù)函數(shù)圖像的性質(zhì)即可求解.【詳解】解:(1)方式一:當(dāng)時,,當(dāng)時,;方式二:;或解:(1)方式一:化簡,得;方式二:;(2)點的坐標(biāo)為(3)由圖象可得,當(dāng)每月主叫時間小于130分鐘時選擇方式二省錢;當(dāng)每月主叫時間等于130分鐘時兩種方式都一樣;當(dāng)每月主叫時間大于130分鐘時選擇方式一省錢。【點睛】此題主要考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵是根據(jù)題意寫出函數(shù)關(guān)系式.23、(1)(﹣,3)(2)(3)(,)或(﹣,5)或(,﹣)【解析】

(1)由線段DE,CD的長是方程x2﹣9x+18=0的兩根,且CD>DE,可求出CD、DE的長,由四邊形ABCD是菱形,利用菱形的性質(zhì)可求得D點的坐標(biāo).(2)由(1)可得OB、CM,可得B、C坐標(biāo),進(jìn)而求得H點坐標(biāo),由反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,可求的k的值;(3)分別以CF為平行四邊形的一邊或者為對角線的情形進(jìn)行討論即可.【詳解】(1)x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四邊形ABCD是菱形,∴AC⊥BD,AE=EC==3,∴∠DCA=30°,∠EDC=60°,Rt△DEM中,∠DEM=30°,∴DM=DE=,∵OM⊥AB,∴S菱形ABCD=AC?BD=CD?OM,∴=6OM,OM=3,∴D(﹣,3);(2)∵OB=DM=,CM=6﹣=,∴B(,0),C(,3),∵H是BC的中點,∴H(3,),∴k=3×=;故答案為;(3)①∵DC=BC,∠DCB=60°,∴△DCB是等邊三角形,∵H是BC的中點,∴DH⊥BC,∴當(dāng)Q與B重合時,如圖1,四邊形CFQP是平行四邊形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2=CP,∴P(,);②如圖2,∵四邊形QPFC是平行四邊形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6,連接QA,∵AE=EC,QE⊥AC,∴QA=QC=6,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣,6),由①知:F(,2),由F到C的平移規(guī)律可得P到Q的平移規(guī)律,則P(﹣﹣3,6﹣),即P(﹣,5);③如圖3,四邊形CQFP是平行四邊形,同理知:Q(﹣,6),F(xiàn)(,2),C(,3),∴P(,﹣);綜上所述,點P的坐標(biāo)為:(,)或(﹣,5)或(,﹣).【點睛】本題主要考查平行四邊形、菱形的圖像和性質(zhì),反比例函數(shù)的圖像與性質(zhì)等,綜合性較大,需綜合運用所學(xué)知識充分利用已知條件求解.24、(1),點為;(2);(3)存在,點為,理由見解析【解析】

(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出m的值及點A的坐標(biāo);(2)過點P作PH⊥x軸,垂足為H,則PH=,利用三角形的面積公式結(jié)合△PAC的面積為,可求出AC的長,進(jìn)而可得出點C的坐標(biāo),再根據(jù)點P,C的坐標(biāo),利用待定系數(shù)法即可求出直線PC的解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論