2024年中考數(shù)學二輪題型突破練習題型5 圓的相關證明與計算(復習講義)(教師版)_第1頁
2024年中考數(shù)學二輪題型突破練習題型5 圓的相關證明與計算(復習講義)(教師版)_第2頁
2024年中考數(shù)學二輪題型突破練習題型5 圓的相關證明與計算(復習講義)(教師版)_第3頁
2024年中考數(shù)學二輪題型突破練習題型5 圓的相關證明與計算(復習講義)(教師版)_第4頁
2024年中考數(shù)學二輪題型突破練習題型5 圓的相關證明與計算(復習講義)(教師版)_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

PAGE題型五圓的相關證明與計算(復習講義)【考點總結|典例分析】考點01圓的有關概念1.與圓有關的概念和性質(1)圓:平面上到定點的距離等于定長的所有點組成的圖形.(2)弦與直徑:連接圓上任意兩點的線段叫做弦,過圓心的弦叫做直徑,直徑是圓內(nèi)最長的弦.(3)?。簣A上任意兩點間的部分叫做弧,小于半圓的弧叫做劣弧,大于半圓的弧叫做優(yōu)?。?)圓心角:頂點在圓心的角叫做圓心角.(5)圓周角:頂點在圓上,并且兩邊都與圓還有一個交點的角叫做圓周角.(6)弦心距:圓心到弦的距離.考點02垂徑定理及其推論1.垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。P于垂徑定理的計算常與勾股定理相結合,解題時往往需要添加輔助線,一般過圓心作弦的垂線,構造直角三角形.2.推論(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。唬?)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條?。键c03圓心角、弧、弦的關系1.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等.圓心角、弧和弦之間的等量關系必須在同圓等式中才成立.2.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等.考點04圓周角定理及其推論1.定理一條弧所對的圓周角等于它所對的圓心角的一半.2.推論(1)在同圓或等圓中,同弧或等弧所對的圓周角相等.(2)直徑所對的圓周角是直角.考點05與圓有關的位置關系1.點與圓的位置關系設點到圓心的距離為d.(1)d<r?點在⊙O內(nèi);(2)d=r?點在⊙O上;(3)d>r?點在⊙O外.判斷點與圓之間的位置關系,將該點的圓心距與半徑作比較即可.2.直線和圓的位置關系位置關系相離相切相交圖形公共點個數(shù)0個1個2個數(shù)量關系d>rd=rd<r考點06切線的性質與判定1.切線的性質(1)切線與圓只有一個公共點.(2)切線到圓心的距離等于圓的半徑.(3)切線垂直于經(jīng)過切點的半徑.利用切線的性質解決問題時,通常連過切點的半徑,利用直角三角形的性質來解決問題.2.切線的判定(1)與圓只有一個公共點的直線是圓的切線(定義法).(2)到圓心的距離等于半徑的直線是圓的切線.(3)經(jīng)過半徑外端點并且垂直于這條半徑的直線是圓的切線.切線判定常用的證明方法:①知道直線和圓有公共點時,連半徑,證垂直;②不知道直線與圓有沒有公共點時,作垂直,證垂線段等于半徑.考點07三角形與圓1.三角形外接圓外心是三角形三條垂直平分線的交點,它到三角形的三個頂點的距離相等.2.三角形的內(nèi)切圓內(nèi)心是三角形三條角平分線的交點,它到三角形的三條邊的距離相等.1.(2023·四川眉山·統(tǒng)考中考真題)如圖,SKIPIF1<0切SKIPIF1<0于點B,連接SKIPIF1<0交SKIPIF1<0于點C,SKIPIF1<0交SKIPIF1<0于點D,連接SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的度數(shù)為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】如圖,連接SKIPIF1<0,證明SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,從而可得SKIPIF1<0.【詳解】解:如圖,連接SKIPIF1<0,

∵SKIPIF1<0切SKIPIF1<0于點B,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;故選:C.【點睛】本題考查的是切線的性質,圓周角定理的應用,三角形的內(nèi)角和定理的應用,掌握基本圖形的性質是解本題的關鍵.2.(2023·重慶·統(tǒng)考中考真題)如圖,SKIPIF1<0為SKIPIF1<0的直徑,直線SKIPIF1<0與SKIPIF1<0相切于點C,連接SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的度數(shù)為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】連接SKIPIF1<0,先根據(jù)圓的切線的性質可得SKIPIF1<0,從而可得SKIPIF1<0,再根據(jù)等腰三角形的性質即可得.【詳解】解:如圖,連接SKIPIF1<0,

SKIPIF1<0直線SKIPIF1<0與SKIPIF1<0相切,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:B.【點睛】本題考查了圓的切線的性質、等腰三角形的性質,熟練掌握圓的切線的性質是解題關鍵.3.(2023·四川自貢·統(tǒng)考中考真題)如圖,SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的度數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0是SKIPIF1<0的直徑,得出SKIPIF1<0,進而根據(jù)同弧所對的圓周角相等,得出SKIPIF1<0,進而即可求解.【詳解】解:∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:C.【點睛】本題考查了圓周角定理的推論,熟練掌握圓周角定理是解題的關鍵.4.(2023·江蘇蘇州·統(tǒng)考中考真題)如圖,SKIPIF1<0是半圓SKIPIF1<0的直徑,點SKIPIF1<0在半圓上,SKIPIF1<0,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點SKIPIF1<0.設SKIPIF1<0的面積為SKIPIF1<0的面積為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,證明SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,再利用正切的定義可得答案.【詳解】解:如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;故選:A.【點睛】本題考查的是圓周角定理的應用,勾股定理的應用,銳角三角函數(shù)的應用,作出合適的輔助線構建直角三角形是解本題的關鍵.5.如圖,A,B,C是半徑為1的⊙O上的三個點,若AB=SKIPIF1<0,∠CAB=30°,則∠ABC的度數(shù)為()A.95° B.100° C.105° D.110°【答案】C【分析】連接OB,OC,根據(jù)勾股定理逆定理可得∠AOB=90°,∠ABO=∠BAO=45°,根據(jù)圓周角定理可得∠COB=2∠CAB=60°,∠OBC=∠OCB=60°,由此可求得答案.【詳解】解:如圖,連接OB,OC,∵OA=OB=1,AB=SKIPIF1<0,∴OA2+OB2=AB2,∴∠AOB=90°,又∵OA=OB,∴∠ABO=∠BAO=45°,∵∠CAB=30°,∴∠COB=2∠CAB=60°,又∵OC=OB,∴∠OBC=∠OCB=60°,∴∠ABC=∠ABO+∠OBC=105°,故選:C.【點睛】本題考查了勾股定理的逆定理,等腰三角形的性質,圓周角定理,熟練掌握圓周角定理是解決本題的關鍵.6.(2023·四川宜賓·統(tǒng)考中考真題)如圖,已知點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0為SKIPIF1<0的中點.若SKIPIF1<0,則SKIPIF1<0等于()

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】連接SKIPIF1<0,如圖所示,根據(jù)圓周角定理,找到各個角之間的關系即可得到答案.【詳解】解:連接SKIPIF1<0,如圖所示:

SKIPIF1<0點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,根據(jù)圓周角定理可知SKIPIF1<0,SKIPIF1<0,故選:A.【點睛】本題考查圓中求角度問題,涉及圓周角定理,找準各個角之間的和差倍分關系是解決問題的關鍵.7.如圖,AB是⊙O的直徑,AC,BC是⊙O的弦,若SKIPIF1<0,則SKIPIF1<0的度數(shù)為()A.70° B.90° C.40° D.60°【答案】A【分析】直接根據(jù)直徑所對的圓周角為直角進行求解即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,∴在Rt△ABC中,∠B=90°-∠A=70°,故選:A.【點睛】本題考查直徑所對的圓周角為直角,理解基本定理是解題關鍵.8.如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.點SKIPIF1<0為SKIPIF1<0內(nèi)一點,且滿足SKIPIF1<0SKIPIF1<0.當SKIPIF1<0的長度最小時,SKIPIF1<0的面積是()A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由題意知SKIPIF1<0,又SKIPIF1<0長度一定,則點P的運動軌跡是以SKIPIF1<0中點O為圓心,SKIPIF1<0長為半徑的圓弧,所以當B、P、O三點共線時,BP最短;在SKIPIF1<0中,利用勾股定理可求BO的長,并得到點P是BO的中點,由線段長度即可得到SKIPIF1<0是等邊三角形,利用特殊SKIPIF1<0三邊關系即可求解.【詳解】解:SKIPIF1<0SKIPIF1<0SKIPIF1<0取SKIPIF1<0中點O,并以O為圓心,SKIPIF1<0長為半徑畫圓由題意知:當B、P、O三點共線時,BP最短SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0點P是BO的中點SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0是等邊三角形SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.【點睛】本題主要考察動點的線段最值問題、點與圓的位置關系和隱形圓問題,屬于動態(tài)幾何綜合題型,中檔難度.解題的關鍵是找到動點P的運動軌跡,即隱形圓.9.(2023·湖南常德·統(tǒng)考中考真題)如圖,四邊形SKIPIF1<0是SKIPIF1<0的內(nèi)接四邊形,SKIPIF1<0是直徑,SKIPIF1<0是SKIPIF1<0的中點,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0.

(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)證明見解析(2)SKIPIF1<0,SKIPIF1<0【分析】(1)根據(jù)“連半徑,證垂直”即可,(2)先由“直徑所對的圓周角是直角”,證SKIPIF1<0是直角三角形,用勾股定理求出SKIPIF1<0長,再通過三角形相似即可求解.【詳解】(1)連接SKIPIF1<0

∵SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0為半徑,∴SKIPIF1<0為SKIPIF1<0的切線,(2)∵SKIPIF1<0為SKIPIF1<0直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,

在SKIPIF1<0中,由勾股定理得:SKIPIF1<0.【點睛】此題考查切線的判定,圓周角定理,勾股定理定理的應用,相似三角形的判定與性質,熟練掌握相關性質與判定是解題的關鍵.10.(2023·湖南張家界·統(tǒng)考中考真題)如圖,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0是SKIPIF1<0延長線上一點,連接SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若直徑SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)詳見解析(2)SKIPIF1<0【分析】(1)根據(jù)直徑所對的圓周角是直角,余角的性質即可求得結論;(2)根據(jù)已知條件可知SKIPIF1<0,再根據(jù)正切的定義和相似三角形的性質得到線段的關系即可求得線段SKIPIF1<0的長度.【詳解】(1)證明:連接SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的切線;(2)解:∵SKIPIF1<0,∴SKIPIF1<0,∵在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,又∵SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(取正值),∴SKIPIF1<0,【點睛】本題考查了圓周角的性質,切線的判定定理,正切的定義,相似三角形的性質和判定,找出正切的定義與相似三角形相似比的關聯(lián)是解題的關鍵.11.如圖,A,B是SKIPIF1<0上兩點,且SKIPIF1<0,連接OB并延長到點C,使SKIPIF1<0,連接AC.(1)求證:AC是SKIPIF1<0的切線.(2)點D,E分別是AC,OA的中點,DE所在直線交SKIPIF1<0于點F,G,SKIPIF1<0,求GF的長.【答案】(1)見解析;(2)2SKIPIF1<0【分析】(1)先證得△AOB為等邊三角形,從而得出∠OAB=60°,利用三角形外角的性質得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出結論;(2)過O作OM⊥DF于M,DN⊥OC于N,利用勾股定理得出AC=SKIPIF1<0,根據(jù)含30°的直角三角形的性質得出DN=SKIPIF1<0,再根據(jù)垂徑定理和勾股定理即可求出GF的長.【詳解】(1)證明:∵AB=OA,OA=OB∴AB=OA=OB∴△AOB為等邊三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC是⊙O的切線;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0∵D、E分別為AC、OA的中點,∴OE//BC,DC=SKIPIF1<0過O作OM⊥DF于M,DN⊥OC于N則四邊形OMDN為矩形∴DN=OM在Rt△CDN中,∠C=30°,∴DN=SKIPIF1<0DC=SKIPIF1<0∴OM=SKIPIF1<0連接OG,∵OM⊥GF∴GF=2MG=2SKIPIF1<0=SKIPIF1<0=2SKIPIF1<0【點睛】本題考查了切線的判定、垂徑定理、等邊三角形的性質和判定,熟練掌握相關的知識是解題的關鍵.12.(2023·遼寧·統(tǒng)考中考真題)如圖,SKIPIF1<0是SKIPIF1<0的直徑,點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,點SKIPIF1<0在線段SKIPIF1<0的延長線上,且SKIPIF1<0.

(1)求證:EF與SKIPIF1<0相切;(2)若SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)利用圓周角定理得到SKIPIF1<0,結合已知推出SKIPIF1<0,再證明SKIPIF1<0,推出SKIPIF1<0,即可證明結論成立;(2)設SKIPIF1<0半徑為x,則SKIPIF1<0,在SKIPIF1<0中,利用正弦函數(shù)求得半徑的長,再在SKIPIF1<0中,解直角三角形即可求解.【詳解】(1)證明:連接SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0半徑,∴EF與SKIPIF1<0相切;(2)解:設SKIPIF1<0半徑為x,則SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗,SKIPIF1<0是所列方程的解,∴SKIPIF1<0半徑為4,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查了圓的切線的判定、圓周角定理、解直角三角形以及相似三角形的判定和性質等知識,熟練掌握圓的相關知識和相似三角形的判定和性質是解題的關鍵.13.(2023·浙江金華·統(tǒng)考中考真題)如圖,點SKIPIF1<0在第一象限內(nèi),SKIPIF1<0與SKIPIF1<0軸相切于點SKIPIF1<0,與SKIPIF1<0軸相交于點SKIPIF1<0.連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0.

(1)求證:四邊形SKIPIF1<0為矩形.(2)已知SKIPIF1<0的半徑為4,SKIPIF1<0,求弦SKIPIF1<0的長.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)根據(jù)切線的性質及有三個角是直角的四邊形是矩形判定即可.(2)根據(jù)矩形的性質、垂徑定理及圓的性質計算即可.【詳解】(1)證明:∵SKIPIF1<0與SKIPIF1<0軸相切于點SKIPIF1<0,∴SKIPIF1<0軸.∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是矩形.(2)如圖,連接SKIPIF1<0.

SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0點SKIPIF1<0為圓心,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【點睛】本題考查了矩形的判定,垂徑定理,圓的性質,熟練掌握矩形的判定和垂徑定理是解題的關鍵.14.如圖,在SKIPIF1<0中,SKIPIF1<0是直徑,弦SKIPIF1<0,垂足為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點,SKIPIF1<0為弦SKIPIF1<0延長線上一點,連接SKIPIF1<0并延長交直徑SKIPIF1<0的延長線于點SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,若SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0的半徑為8,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)連接OE,證明OE⊥EF即可;(2)由SKIPIF1<0證得SKIPIF1<0,運用正弦的概念可得結論.【詳解】解:(1)證明:連接OE,如圖,∵OA=OE∴∠OAE=∠OEA.∵EF=PF,∴∠EPF=∠PEF∵∠APH=∠EPF,∴∠APH=∠EPF,∴∠AEF=∠APH.∵CD⊥AB,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE⊥EF.∵OE是SKIPIF1<0的半徑∴EF是圓的切線,(2)∵CD⊥AB∴SKIPIF1<0是直角三角形∵SKIPIF1<0∴SKIPIF1<0設SKIPIF1<0,則SKIPIF1<0由勾股定理得,SKIPIF1<0由(1)得,SKIPIF1<0是直角三角形∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0解得,SKIPIF1<0【點睛】此題主要考查了圓的切線的判定,勾股定理和解直角三角形等知識,熟練掌握切線的判定是解答此題的關鍵.15.(2023·四川成都·統(tǒng)考中考真題)如圖,以SKIPIF1<0的邊SKIPIF1<0為直徑作SKIPIF1<0,交SKIPIF1<0邊于點D,過點C作SKIPIF1<0交SKIPIF1<0于點E,連接SKIPIF1<0SKIPIF1<0.

(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0和SKIPIF1<0的長.【答案】(1)見解析(2)SKIPIF1<0,SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0,得到SKIPIF1<0,再根據(jù)同弧所對的圓周角相等,得到SKIPIF1<0,可證明SKIPIF1<0是等腰三角形,即可解答;(2)根據(jù)直徑所對的圓周角為直角,得到SKIPIF1<0,設SKIPIF1<0,根據(jù)勾股定理列方程,解得x的值,即可求出SKIPIF1<0;解法一:過點SKIPIF1<0作SKIPIF1<0的垂線段,交SKIPIF1<0的延長線于點F,證明SKIPIF1<0,求出SKIPIF1<0的長,根據(jù)勾股定理即可解出SKIPIF1<0的長;解法二:連接SKIPIF1<0,得到角相等,進而證得SKIPIF1<0,根據(jù)對應邊成比例即可解出SKIPIF1<0的長.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:設SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,根據(jù)(1)中的結論,可得SKIPIF1<0,根據(jù)勾股定理,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理,可得SKIPIF1<0;解法一:如圖,過點SKIPIF1<0作SKIPIF1<0的垂線段,交SKIPIF1<0的延長線于點F,

SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,可得方程SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理,可得SKIPIF1<0.解法二:如圖,連接SKIPIF1<0,

SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【點睛】本題考查了圓周角定理,等腰三角形的判定和性質,相似三角形的判定及性質,平行線的性質,勾股定理,正切,利用等量代換證明相關角相等是解題的關鍵.16.如圖,SKIPIF1<0是SKIPIF1<0的內(nèi)接三角形,SKIPIF1<0是SKIPIF1<0的直徑,點SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0.(1)求證:直線SKIPIF1<0與SKIPIF1<0相切;(2)若SKIPIF1<0的直徑是10,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0.【分析】(1)連接OD,由點D是SKIPIF1<0的中點得OD⊥BC,由DE//BC得OD⊥DE,由OD是半徑可得DE是切線;(2)證明△ODE是等腰直角三角形,可求出OE的長,從而可求得結論.【詳解】解:(1)連接OD交BC于點F,如圖,∵點SKIPIF1<0是SKIPIF1<0的中點,∴OD⊥BC,∵DE//BC∴OD⊥DE∵OD是SKIPIF1<0的半徑∴直線SKIPIF1<0與SKIPIF1<0相切;(2)∵AC是SKIPIF1<0的直徑,且AB=10,∴∠ABC=90°,SKIPIF1<0∵OD⊥BC∴∠OFC=90°∴OD//ABSKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由勾股定理得,SKIPIF1<0∴SKIPIF1<0.【點睛】此題主要考查了切線的判定與性質的綜合運用,熟練掌握切線的判定與性質是解答此題的關鍵.20.如圖,已知點SKIPIF1<0是以SKIPIF1<0為直徑的圓上一點,SKIPIF1<0是SKIPIF1<0延長線上一點,過點SKIPIF1<0作SKIPIF1<0的垂線交SKIPIF1<0的延長線于點SKIPIF1<0,連結SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的半徑.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0、SKIPIF1<0,根據(jù)已知條件證明SKIPIF1<0,SKIPIF1<0即可得解;(2)由(1)可得SKIPIF1<0,得到SKIPIF1<0,令SKIPIF1<0,根據(jù)正切的定義列式求解即可;【詳解】解:(1)證明:連結SKIPIF1<0、SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0的切線.(2)由(1)知,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,∴SKIPIF1<0.即SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),∴SKIPIF1<0的半徑為SKIPIF1<0.【點睛】本題主要考查了圓的綜合運用,結合相似三角形的判定與性質、正切的定義求解是解題的關鍵.21.(2023·上?!そy(tǒng)考中考真題)如圖,在SKIPIF1<0中,弦SKIPIF1<0的長為8,點C在SKIPIF1<0延長線上,且SKIPIF1<0.

(1)求SKIPIF1<0的半徑;(2)求SKIPIF1<0的正切值.【答案】(1)5(2)SKIPIF1<0【分析】(1)延長SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,先根據(jù)圓周角定理可得SKIPIF1<0,再解直角三角形可得SKIPIF1<0,由此即可得;(2)過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,先解直角三角形可得SKIPIF1<0,從而可得SKIPIF1<0,再利用勾股定理可得SKIPIF1<0,然后根據(jù)正切的定義即可得.【詳解】(1)解:如圖,延長SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,

由圓周角定理得:SKIPIF1<0,SKIPIF1<0弦SKIPIF1<0的長為8,且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的半徑為SKIPIF1<0.(2)解:如圖,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

SKIPIF1<0的半徑為5,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的正切值為SKIPIF1<0.【點睛】本題考查了圓周角定理、解直角三角形、勾股定理等知識點,熟練掌握解直角三角形的方法是解題關鍵.22.如圖,AB是⊙O的直徑,C為⊙O上一點,連接AC,CE⊥AB于點E,D是直徑AB延長線上一點,且∠BCE=∠BCD.(1)求證:CD是⊙O的切線;(2)若AD=8,BECE【分析】(1)連接OC,根據(jù)圓周角定理得到∠ACB=90°,根據(jù)余角的性質得到∠A=∠ECB,求得∠A=∠BCD,根據(jù)等腰三角形的性質得到∠A=∠ACO,等量代換得到∠ACO=∠BCD,求得∠DCO=90°,于是得到結論;(2)設BC=k,AC=2k,根據(jù)相似三角形的性質即可得到結論.【解析】(1)證明:連接OC,∵AB是⊙O的直徑,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切線;(2)解:∵∠A=∠BCE,∴tanA=BCAC=tan∠設BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BCAC∵AD=8,∴CD=4.23.如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結OC,弦AD分別交OC,BC于點E,F(xiàn),其中點E是AD的中點.(1)求證:∠CAD=∠CBA.(2)求OE的長.【分析】(1)利用垂徑定理以及圓周角定理解決問題即可.(2)證明△AEC∽△BCA,推出CEAC【解析】(1)證明:∵AE=DE,OC是半徑,∴AC=∴∠CAD=∠CBA.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CEAC∴CE6∴CE=3.6,∵OC=1∴OE=OC﹣EC=5﹣3.6=1.4.24.(2023·遼寧大連·統(tǒng)考中考真題)如圖1,在SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的直徑,點SKIPIF1<0為SKIPIF1<0上一點,SKIPIF1<0為SKIPIF1<0的平分線交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.

(1)求SKIPIF1<0的度數(shù);(2)如圖2,過點SKIPIF1<0作SKIPIF1<0的切線交SKIPIF1<0延長線于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.若SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)圓周角定理證明兩直線平行,再利用平行線的性質證明角度相等即可;(2)由勾股定理找到邊的關系,求出線段長,再利用等面積法求解即可.【詳解】(1)∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,(2)如圖,連接SKIPIF1<0,設SKIPIF1<0,

則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,在SKIPIF1<0中,有勾股定理得:SKIPIF1<0由(1)得:SKIPIF1<0,∴SKIPIF1<0,由勾股定理得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的切線,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】此題考查了圓周角定理和勾股定理,三角形中位線定理,切線的性質,解一元二次方程,熟練掌握圓周角定理和勾股定理是解題的關鍵.25.(2023·黑龍江齊齊哈爾·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點D,點E是斜邊SKIPIF1<0上一點,以SKIPIF1<0為直徑的SKIPIF1<0經(jīng)過點D,交SKIPIF1<0于點F,連接SKIPIF1<0.

(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求圖中陰影部分的面積(結果保留π).【答案】(1)見解析(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0,SKIPIF1<0,由角平分線的定義可得SKIPIF1<0,從而可得SKIPIF1<0,再根據(jù)平行線的判定可得SKIPIF1<0,從而可得SKIPIF1<0,再根據(jù)切線的判定即可得出結論;(2)連接SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,再由直角三角形的性質可得SKIPIF1<0,再由圓周角定理可得SKIPIF1<0,根據(jù)角平分線的定義可得SKIPIF1<0,利用銳角三角函數(shù)求得SKIPIF1<0,再由直角三角形的性質可得SKIPIF1<0,證明SKIPIF1<0是等邊三角形,可得SKIPIF1<0,從而證明SKIPIF1<0是等邊三角形,可得SKIPIF1<0垂直平分SKIPIF1<0,再由SKIPIF1<0,可得SKIPIF1<0,從而可得SKIPIF1<0,再利用扇形的面積公式計算即可.【詳解】(1)證明:連接SKIPIF1<0,

∵SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的半徑,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0于點D,又∵SKIPIF1<0為SKIPIF1<0的半徑,∴SKIPIF1<0是SKIPIF1<0的切線.(2)解:連接SKIPIF1<0,SKIPIF1<0,∵在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0垂直平分SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.

【點睛】本題考查角平分線的定義、平行線的判定與性質、切線的判定、直角三角形的性質、圓周角定理、等邊三角形的判定與性質、垂直平分線的判定與性質及扇形的面積公式,熟練掌握相關知識是解題的關鍵.26.如圖,⊙O的半徑OA=6,過點A作⊙O的切線AP,且AP=8,連接PO并延長,與⊙O交于點B、D,過點B作BC∥OA,并與⊙O交于點C,連接AC、CD.(1)求證:DC∥AP;(2)求AC的長.【分析】(1)根據(jù)切線的性質得到∠OAP=90°,根據(jù)圓周角定理得到∠BCD=90°,根據(jù)平行線的性質和判定定理即可得到結論;(2)根據(jù)勾股定理和相似三角形的判定和性質定理即可得到結論.【解析】(1)證明:∵AP是⊙O的切線,∴∠OAP=90°,∵BD是⊙O的直徑,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延長AO交DC于點E,則AE⊥DC,OE=12BC,CE在Rt△AOP中,OP=62+82由(1)知,△AOP∽△CBD,∴DBOP即1210∴BC=365,DC∴OE=185,CE在Rt△AEC中,AC=A27.(2023·湖北武漢·統(tǒng)考中考真題)如圖,SKIPIF1<0都是SKIPIF1<0的半徑,SKIPIF1<0.

(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的半徑.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)由圓周角定理得出,SKIPIF1<0,再根據(jù)SKIPIF1<0,即可得出結論;(2)過點SKIPIF1<0作半徑SKIPIF1<0于點SKIPIF1<0,根據(jù)垂徑定理得出SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,在SKIPIF1<0中根據(jù)勾股定理得出SKIPIF1<0,在SKIPIF1<0中,根據(jù)勾股定理得出SKIPIF1<0,求出SKIPIF1<0即可.【詳解】(1)證明:∵SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論