版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年豫西名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知直角三角形ABC,斜邊,D為AB邊上的一點(diǎn),,,則CD的長為()A. B. C.2 D.32.若正實(shí)數(shù)滿足,則的最小值為A. B. C. D.3.已知向量,,,則實(shí)數(shù)的值為()A. B. C.2 D.34.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.05.設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:①若,,則②若,,,則③若,,則④若,,則其中正確命題的序號(hào)是()A.①和② B.②和③ C.③和④ D.①和④6.已知向量,若,則()A.1 B. C.2 D.37.若實(shí)數(shù)滿足約束條件則的最大值與最小值之和為()A. B. C. D.8.為了了解所加工的一批零件的長度,抽測(cè)了其中個(gè)零件的長度,在這個(gè)工作中,個(gè)零件的長度是()A.總體 B.個(gè)體 C.樣本容量 D.總體的一個(gè)樣本9.從四件正品、兩件次品中隨機(jī)取出兩件,記“至少有一件次品”為事件,則的對(duì)立事件是()A.至多有一件次品 B.兩件全是正品 C.兩件全是次品 D.至多有一件正品10.已知變量和滿足關(guān)系,變量與正相關(guān).下列結(jié)論中正確的是()A.與負(fù)相關(guān),與負(fù)相關(guān)B.與正相關(guān),與正相關(guān)C.與正相關(guān),與負(fù)相關(guān)D.與負(fù)相關(guān),與正相關(guān)二、填空題:本大題共6小題,每小題5分,共30分。11.求值:_____.12.某單位為了了解用電量度與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某天的用電量與當(dāng)天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預(yù)測(cè)當(dāng)氣溫為5℃時(shí),用電量的度數(shù)約為____.13.已知角滿足且,則角是第________象限的角.14.已知直線:與直線:平行,則______.15.弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個(gè)扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.16.在邊長為2的正三角形ABC內(nèi)任取一點(diǎn)P,則使點(diǎn)P到三個(gè)頂點(diǎn)的距離至少有一個(gè)小于1的概率是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,值域?yàn)?,求常?shù)、的值;18.如圖,甲、乙兩個(gè)企業(yè)的用電負(fù)荷量關(guān)于投產(chǎn)持續(xù)時(shí)間(單位:小時(shí))的關(guān)系均近似地滿足函數(shù).(1)根據(jù)圖象,求函數(shù)的解析式;(2)為使任意時(shí)刻兩企業(yè)用電負(fù)荷量之和不超過9,現(xiàn)采用錯(cuò)峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時(shí)投產(chǎn),求的最小值.19.已知等差數(shù)列的首項(xiàng)為,公差為,前n項(xiàng)和為,且滿足,.(1)證明;(2)若,,當(dāng)且僅當(dāng)時(shí),取得最小值,求首項(xiàng)的取值范圍.20.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范圍.21.為了加強(qiáng)“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學(xué)校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務(wù)室.由于此警務(wù)室的后背靠墻,無需建造費(fèi)用,甲工程隊(duì)給出的報(bào)價(jià)為:屋子前面新建墻體的報(bào)價(jià)為每平方米400元,左右兩面新建墻體報(bào)價(jià)為每平方米300元,屋頂和地面以及其他報(bào)價(jià)共計(jì)14400元.設(shè)屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當(dāng)左右兩面墻的長度為多少時(shí),甲工程隊(duì)報(bào)價(jià)最低?并求出最低報(bào)價(jià).(Ⅱ)現(xiàn)有乙工程隊(duì)也要參與此警務(wù)室的建造競(jìng)標(biāo),其給出的整體報(bào)價(jià)為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊(duì)都能競(jìng)標(biāo)成功,試求a
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
設(shè),利用勾股定理求出的值即得解.【詳解】如圖,由于,所以設(shè),所以所以.故選:A【點(diǎn)睛】本題主要考查解直角三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.2、D【解析】
將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當(dāng)且僅當(dāng),取等號(hào),故選D.【點(diǎn)睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)是否在定義域內(nèi),二是多次用或時(shí)等號(hào)能否同時(shí)成立).3、A【解析】
將向量的坐標(biāo)代入中,利用坐標(biāo)相等,即可得答案.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題考查向量相等的坐標(biāo)運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最??;當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.5、A【解析】
根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①是真命題;根據(jù)面面平行的性質(zhì)結(jié)合線面垂直的性質(zhì),可得②是真命題;在正方體中舉出反例,可得平行于同一個(gè)平面的兩條直線不一定平行,垂直于同一個(gè)平面和兩個(gè)平面也不一定平行,可得③④不正確.由此可得本題的答案.【詳解】解:對(duì)于①,因?yàn)?,所以?jīng)過作平面,使,可得,又因?yàn)?,,所以,結(jié)合得.由此可得①是真命題;對(duì)于②,因?yàn)榍?,所以,結(jié)合,可得,故②是真命題;對(duì)于③,設(shè)直線、是位于正方體上底面所在平面內(nèi)的相交直線,而平面是正方體下底面所在的平面,則有且成立,但不能推出,故③不正確;對(duì)于④,設(shè)平面、、是位于正方體經(jīng)過同一個(gè)頂點(diǎn)的三個(gè)面,則有且,但是,推不出,故④不正確.綜上所述,其中正確命題的序號(hào)是①和②故選:【點(diǎn)睛】本題給出關(guān)于空間線面位置關(guān)系的命題,要我們找出其中的真命題,著重考查了線面平行、面面平行的性質(zhì)和線面垂直、面面垂直的判定與性質(zhì)等知識(shí),屬于中檔題.6、B【解析】
可求出,根據(jù)即可得出,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求出x.【詳解】;∵;∴;解得.故選B.【點(diǎn)睛】本題考查向量垂直的充要條件,向量坐標(biāo)的減法和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
首先根據(jù)不等式組畫出對(duì)應(yīng)的可行域,再分別計(jì)算出頂點(diǎn)的坐標(biāo),帶入目標(biāo)函數(shù)求出相應(yīng)的值,即可找到最大值和最小值.【詳解】不等式組對(duì)應(yīng)的可行域如圖所示:,.,.,,.,,.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃,根據(jù)不等式組畫出可行域?yàn)榻忸}的關(guān)鍵,屬于簡(jiǎn)單題.8、D【解析】
根據(jù)總體與樣本中的相關(guān)概念進(jìn)行判斷.【詳解】由題意可知,在這個(gè)工作中,個(gè)零件的長度是總體的一個(gè)樣本,故選D.【點(diǎn)睛】本題考查總體與樣本中相關(guān)概念的理解,屬于基礎(chǔ)題.9、B【解析】
根據(jù)對(duì)立事件的概念,選出正確選項(xiàng).【詳解】從四件正品、兩件次品中隨機(jī)取出兩件,“至少有一件次品”的對(duì)立事件為兩件全是正品.故選:B【點(diǎn)睛】本小題主要考查對(duì)立事件的理解,屬于基礎(chǔ)題.10、A【解析】
因?yàn)樽兞亢蜐M足關(guān)系,一次項(xiàng)系數(shù)為,所以與負(fù)相關(guān);變量與正相關(guān),設(shè),所以,得到,一次項(xiàng)系數(shù)小于零,所以與負(fù)相關(guān),故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決。【詳解】由題意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。12、1【解析】
由表格得,即樣本中心點(diǎn)的坐標(biāo)為,又因?yàn)闃颖局行狞c(diǎn)在回歸方程上且,解得:,當(dāng)時(shí),,故答案為1.考點(diǎn):回歸方程【名師點(diǎn)睛】本題考查線性回歸方程,屬容易題.兩個(gè)變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測(cè)值,獲得對(duì)這兩個(gè)變量之間整體關(guān)系的了解.解題時(shí)根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個(gè)確定的方程,根據(jù)所給的的值,代入線性回歸方程,預(yù)報(bào)要銷售的件數(shù).13、三【解析】
根據(jù)三角函數(shù)在各個(gè)象限的符號(hào),確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點(diǎn)睛】本小題主要考查三角函數(shù)在各個(gè)象限的符號(hào),屬于基礎(chǔ)題.14、4【解析】
利用直線平行公式得到答案.【詳解】直線:與直線:平行故答案為4【點(diǎn)睛】本題考查了直線平行的性質(zhì),屬于基礎(chǔ)題型.15、1【解析】設(shè)扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.16、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個(gè)扇形,當(dāng)P落在其內(nèi)時(shí)符合要求,∴P==.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、,;或,;【解析】
先利用輔助角公式化簡(jiǎn),再根據(jù),值域?yàn)榍蠼饧纯?【詳解】.又則,當(dāng)時(shí),,此時(shí)當(dāng)時(shí),,此時(shí)故,;或,;【點(diǎn)睛】本題主要考查了三角函數(shù)的輔助角公式以及三角函數(shù)值域的問題,需要根據(jù)自變量的范圍求出值域,同時(shí)注意正弦函數(shù)部分的系數(shù)正負(fù),屬于中等題型.18、(1);(2)4【解析】
(1)由,得,由,得A,b,代入,求得,從而即可得到本題答案;(2)由題,得恒成立,等價(jià)于恒成立,然后利用和差公式展開,結(jié)合輔助角公式,逐步轉(zhuǎn)化,即可得到本題答案.【詳解】(1)解:由圖知,又,可得,代入,得,又,所求為(2)設(shè)乙投產(chǎn)持續(xù)時(shí)間為小時(shí),則甲的投產(chǎn)持續(xù)時(shí)間為小時(shí),由誘導(dǎo)公式,企業(yè)乙用電負(fù)荷量隨持續(xù)時(shí)間變化的關(guān)系式為:同理,企業(yè)甲用電負(fù)荷量變化關(guān)系式為:兩企業(yè)用電負(fù)荷量之和,依題意,有恒成立即恒成立展開有恒成立其中,,,整理得:解得即取得:的最小值為4.【點(diǎn)睛】本題主要考查根據(jù)三角函數(shù)的圖象求出其解析式,以及三角函數(shù)的實(shí)際應(yīng)用,主要考查學(xué)生的分析問題和解決問題的能力,以及計(jì)算能力,難度較大.19、(1)證明見解析;(2)【解析】
(1)根據(jù)等差數(shù)列的前n項(xiàng)和公式,變形可證明為等差數(shù)列.結(jié)合條件,,可得,進(jìn)而表示出.由為等差數(shù)列,表示出,化簡(jiǎn)變形后結(jié)合不等式性質(zhì)即可證明.(2)將三角函數(shù)式分組,提公因式后結(jié)合同角三角函數(shù)關(guān)系式化簡(jiǎn).再由平方差公式及正弦的和角與差角公式合并.根據(jù)條件等式,結(jié)合等差數(shù)列性質(zhì),即可求得.由,即可確定.當(dāng)且僅當(dāng)時(shí),取得最小值,可得不等式組,即可得首項(xiàng)的取值范圍.【詳解】(1)證明:等差數(shù)列的前n項(xiàng)和為,則所以,,故為等差數(shù)列,因?yàn)?,所以,解得,因?yàn)?得故,從而.(2)而.由條件又由等差數(shù)列性質(zhì)知:所以,因?yàn)?所以,那么.等差數(shù)列,當(dāng)且僅當(dāng)時(shí),取得最小值.,所以.【點(diǎn)睛】本題考查了等差數(shù)列前n項(xiàng)和公式的應(yīng)用,等差數(shù)列通項(xiàng)公式定義及變形式應(yīng)用.三角函數(shù)式變形,正弦和角與差角公式的應(yīng)用,不等式組的解法,綜合性強(qiáng),屬于難題.20、(1)(2)【解析】
(Ⅰ)由條件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c關(guān)于A的三角函數(shù),根據(jù)A的范圍和正弦函數(shù)的性質(zhì)得出a+c的最值.【詳解】解(Ⅰ)銳角又,,由正弦定理得,∴.
∴的取值范圍為【點(diǎn)睛】本題主要考查正弦定理,余弦定理的應(yīng)用,基本不等式的應(yīng)用,屬于基礎(chǔ)題.21、(Ⅰ)4米時(shí),28800元;(Ⅱ)0<a<12.25.【解析】
(Ⅰ)設(shè)甲工程隊(duì)的總造價(jià)為y元,先求出函數(shù)的解析式,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史研究服務(wù)合同
- 建筑結(jié)構(gòu)用高性能復(fù)合材料應(yīng)用方案
- 2025年貴州省(80所)輔導(dǎo)員招聘考試真題匯編附答案
- 2026上海對(duì)外經(jīng)貿(mào)大學(xué)實(shí)驗(yàn)中心信息管理人員招聘1人參考題庫必考題
- 2026安徽蕪湖市西灣中學(xué)招聘頂崗教師1人參考題庫附答案
- 六年級(jí)上學(xué)期語文期中測(cè)評(píng)卷(二)2026
- 家具廠噴漆車間防火預(yù)案
- 撒訴和好的調(diào)解申請(qǐng)書
- 河南房屋免租申請(qǐng)書范文
- 為什么要遞交申請(qǐng)書郵件
- 2025年河南省公務(wù)員省考《行測(cè)》聯(lián)考真題(含答案)
- 2025年國考(國家礦山安全監(jiān)察局)面試模擬題及參考解析(一)
- 北京急救中心院前病歷書寫規(guī)范(2022年版)
- 福建省福州市八縣一中聯(lián)考2025-2026學(xué)年高二物理第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 鋼材供貨方案及保證措施
- 泰康集團(tuán)入職測(cè)評(píng)題庫及答案
- 燃?xì)鈭?bào)警安全常識(shí)培訓(xùn)課件
- 農(nóng)村水庫改建申請(qǐng)書
- 光伏電站施工安全控制方案
- 2025年工業(yè)機(jī)器人維護(hù)與維護(hù)成本分析報(bào)告
- 柴油發(fā)動(dòng)機(jī)檢修課件
評(píng)論
0/150
提交評(píng)論