2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題含解析_第1頁
2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題含解析_第2頁
2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題含解析_第3頁
2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題含解析_第4頁
2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市同濟大學一附中高一下數(shù)學期末質量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將兩個長、寬、高分別為5,4,3的長方體壘在一起,使其中兩個面完全重合,組成一個大長方體,則大長方體的外接球表面積的最大值為()A. B. C. D.2.已知a,b,c為實數(shù),則下列結論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc23.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結果是()A.7 B.21 C.35 D.494.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.5.已知角α的終邊上有一點P(sin,cos),則tanα=()A. B. C. D.6.若圓的半徑為4,a、b、c為圓的內接三角形的三邊,若abc=16,則三角形的面積為()A.2 B.8 C. D.7.“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.非充分非必要條件8.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.9.若,則的坐標是()A. B. C. D.10.在中,設角的對邊分別為.若,則是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.若,則函數(shù)的最小值是_________.12.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).現(xiàn)從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構成一組勾股數(shù)的概率為.13.若角的終邊經過點,則______.14.若,則__________.15.如圖,邊長為2的菱形的對角線相交于點,點在線段上運動,若,則的最小值為_______.16.己知函數(shù),,則的值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,,且.(1)求邊長;(2)求邊上中線的長.18.等差數(shù)列中,,.(1)求通項公式;(2)若,求的最小值.19.已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.(1)求n的值;(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.①記“”為事件A,求事件A的概率;②在區(qū)間內任取2個實數(shù),求事件“恒成立”的概率.20.已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切,且被軸截得的弦長為,圓的面積小于13.(1)求圓的標準方程:(2)設過點的直線與圓交于不同的兩點,,以,為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程:如果不存在,請說明理由.21.在等差數(shù)列中,已知.(1)求通項;(2)求的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

要計算長方體的外接球表面積就是要求出外接球的半徑,根據(jù)長方體的對角線是外接球的直徑這一性質,就可以求出外接球的表面積,分類討論:(1)長寬的兩個面重合;(2)長高的兩個面重合;(3)高寬兩個面重合,分別計算出新長方體的對角線,然后分別計算出外接球的表面積,最后通過比較即可求出最大值.【詳解】(1)當長寬的兩個面重合,新的長方體的長為5,寬為4,高為6,對角線長為:,所以大長方體的外接球表面積為;(2)當長高兩個面重合,新的長方體的長5,寬為8,高為3,對角線長為:,所以大長方體的外接球表面積為;(3)當寬高兩個面重合,新的長方體的長為10,寬為4,高為3,對角線長為:,所以大長方體的外接球表面積為,顯然大長方體的外接球表面積的最大值為,故本題選B.【點睛】本題考查了長方體外接球的半徑的求法,考查了分類討論思想,考查了球的表面積計算公式,考查了數(shù)學運算能力.2、C【解析】

本題可根據(jù)不等式的性質以及運用特殊值法進行代入排除即可得到正確結果.【詳解】由題意,可知:對于A中,可設,很明顯滿足,但,所以選項A不正確;對于B中,因為不知道的正負情況,所以不能直接得出,所以選項B不正確;對于C中,因為,所以,所以,所以選項C正確;對于D中,若,則不能得到,所以選項D不正確.故選:C.【點睛】本題主要考查了不等式性質的應用以及特殊值法的應用,著重考查了推理能力,屬于基礎題.3、B【解析】

模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎題.4、B【解析】

利用直線斜率與傾斜角的關系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質可得:直線的傾斜角為.故選:B【點睛】本題考查了直線的斜率與傾斜角之間的關系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質,屬于基礎題.5、A【解析】

由題意利用任意角的三角函數(shù)的定義,求得tanα的值.【詳解】解:∵角α的終邊上有一點P(sin,cos),∴x=sin,y=cos,∴則tanα,故選A.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.6、C【解析】

試題分析:由正弦定理可知,∴,∴.考點:正弦定理的運用.7、A【解析】

數(shù)列是等比數(shù)列與命題是等比數(shù)列是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進行判斷.【詳解】若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列是等比數(shù)列,若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列不是等比數(shù)列,∴數(shù)列是等比數(shù)列是數(shù)列是等比數(shù)列的充分非必要條件,故選:A.【點睛】本題主要考查充分不必要條件的判斷,注意等比數(shù)列的性質的靈活運用,屬于基礎題.8、A【解析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.9、C【解析】

,.故選C.10、D【解析】

根據(jù)正弦定理,將等式中的邊a,b消去,化為關于角A,B的等式,整理化簡可得角A,B的關系,進而確定三角形.【詳解】由題得,整理得,因此有,可得或,當時,為等腰三角形;當時,有,為直角三角形,故選D.【點睛】這一類題目給出的等式中既含有角又含有邊的關系,通常利用正弦定理將其都化為關于角或者都化為關于邊的等式,再根據(jù)題目要求求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當且僅當時,等號成立,因此,當時,函數(shù)的最小值是.故答案為:.【點睛】本題考查利用基本不等式求函數(shù)的最值,考查計算能力,屬于基礎題.12、.【解析】試題分析:從中任取3個不同的數(shù),有,,,,,,,,,共10種,其中只有為勾股數(shù),故這3個數(shù)構成一組勾股數(shù)的概率為.考點:用列舉法求隨機事件的概率.13、【解析】

利用三角函數(shù)的定義可計算出,然后利用誘導公式可計算出結果.【詳解】由三角函數(shù)的定義可得,由誘導公式可得.故答案為:.【點睛】本題考查利用三角函數(shù)的定義和誘導公式求值,考查計算能力,屬于基礎題.14、;【解析】

把分子的1換成,然后弦化切,代入計算.【詳解】.故答案為-1.【點睛】本題考查三角函數(shù)的化簡求值.解題關鍵是“1”的代換,即,然后弦化切.15、【解析】

以為原點建立平面直角坐標系,利用計算出兩點的坐標,設出點坐標,由此計算出的表達式,,進而求得最值.【詳解】以為原點建立平面直角坐標系如下圖所示,設,則①,由得②,由①②解得,故.設,則,當時取得最小值為.故填:.【點睛】本小題主要考查平面向量的坐標運算,考查向量數(shù)量積的坐標表示以及數(shù)量積求最值,考查二次函數(shù)的性質,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.16、1【解析】

將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用同角的三角函數(shù)關系,可以求出的值,利用三角形內角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出長;(2)利用余弦定理可以求出的長,進而可以求出的長,然后在中,再利用余弦定理求出邊上中線的長.【詳解】(1),,由正弦定理可知中:(2)由余弦定理可知:,是的中點,故,在中,由余弦定理可知:【點睛】本題考查了正弦定理、余弦定理、同角的三角函數(shù)關系、以及三角形內角和定理,考查了數(shù)學運算能力.18、(1);(2)【解析】

(1)等差數(shù)列中,由,,能求出通項公式.(2)利用等差數(shù)列前項和公式得到不等式,即可求出的最小值.【詳解】解:(1)等差數(shù)列中,,.通項公式,即(2),,解得(舍去或,,的最小值為1.【點睛】本題考查等差數(shù)列的通項公式、項數(shù)的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,屬于基礎題.19、(1);(2)P=.【解析】

試題分析:(1)依題意共有小球n+2個,標號為2的小球有n個,從袋子中隨機抽取1個小球,取到標號為2的小球的概率為,解得n=2;(2)①從袋子中不放回地隨機抽取2個小球共有12種結果,而滿足2≤a+b≤3的結果有8種,故;②由①知,,故,(x,y)可以看成平面中的點的坐標,則全部結果所構成的區(qū)域為,由集合概型得概率為.考點:考查了古典概型和幾何概型.點評:解本題的關鍵是掌握古典概型和集合概型的概率公式,并能正確應用.20、(1).(2)不存在這樣的直線.【解析】

試題分析:(I)用待定系數(shù)法即可求得圓C的標準方程;(Ⅱ)首先考慮斜率不存在的情況.當斜率存在時,設直線l:y=kx+3,A(x1,y1),B(x2,y2).l與圓C相交于不同的兩點,那么Δ>0.由題設及韋達定理可得k與x1、x2之間關系式,進而求出k的值.若k的值滿足Δ>0,則存在;若k的值不滿足Δ>0,則不存在.試題解析:(I)設圓C:(x-a)2+y2=R2(a>0),由題意知解得a=1或a=,又∵S=πR2<13,∴a=1,∴圓C的標準方程為:(x-1)2+y2=1.(Ⅱ)當斜率不存在時,直線l為:x=0不滿足題意.當斜率存在時,設直線l:y=kx+3,A(x1,y1),B(x2,y2),又∵l與圓C相交于不同的兩點,聯(lián)立消去y得:(1+k2)x2+(6k-2)x+6=0,∴Δ=(6k-2)2-21(1+k2)=3k2-6k-5>0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論