2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省昭通市云天化中學高一數學第二學期期末學業(yè)質量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.212.()A. B. C. D.3.若,是不同的直線,,是不同的平面,則下列命題中正確的是()A.若,,,則 B.若,,,則C.若,,,則 D.若,,,則4.△ABC的內角A、B、C的對邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.5.=()A. B. C. D.6.下列函數中,既是偶函數又在(0,+∞)上是單調遞減的是()A.y=-cosx B.y=lgx7.已知,所在平面內一點P滿足,則()A. B. C. D.8.若直線與直線互相平行,則的值為()A.4 B. C.5 D.9.下列函數中,在區(qū)間上為增函數的是A. B.C. D.10.在集合且中任取一個元素,所取元素x恰好滿足方程的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某工廠甲、乙、丙三個車間生產了同一種產品,數量分別為120件,80件,60件,為了了解它們的產品質量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產品中抽取了3件,則n=.12.設等差數列的前項和為,若,,則的最小值為______.13.已知兩個數k+9和6-k的等比中項是2k,則k=________.14.在中,,且,則.15.將一個圓錐截成圓臺,已知截得的圓臺的上、下底面面積之比是1:4,截去的小圓錐母線長為2,則截得的圓臺的母線長為________.16.觀察下列等式:(1);(2);(3);(4),……請你根據給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復),這個等式可以是__________________.(答案不唯一)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數列是等差數列,,.(1)從第幾項開始;(2)求數列前n項和的最大值.18.已知數列是各項均為正數的等比數列,且,.(1)求數列的通項公式;(2)為數列的前n項和,,求數列的前n項和.19.已知圓經過,,三點.(1)求圓的標準方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.20.如圖,四棱錐的底面為平行四邊形,為中點.(1)求證:平面;(2)求證:平面.21.在等比數列中,.(1)求的通項公式;(2)若,求數列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

通過程序一步步分析得到結果,從而得到輸出結果.【詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點睛】本題主要考查算法框圖的輸出結果,意在考查學生的分析能力及計算能力,難度不大.2、A【解析】

將根據誘導公式化為后,利用兩角和的正弦公式可得.【詳解】.故選:A【點睛】本題考查了誘導公式,考查了兩角和的正弦公式,屬于基礎題.3、C【解析】

A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【詳解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,則,分別是平面,的法線,必有;D中若,,,平面,可能平行也可能相交.故選C項.【點睛】本題考查空間中直線與平面,平面與平面的位置關系,屬于簡單題.4、B【解析】

試題分析:根據誘導公式和兩角和的正弦公式以及正弦定理計算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點睛:本題主要考查正弦定理及余弦定理的應用,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數再結合和、差、倍角的正余弦公式進行解答.5、A【解析】

試題分析:由誘導公式,故選A.考點:誘導公式.6、C【解析】

先判斷各函數奇偶性,再找單調性符合題意的即可?!驹斀狻渴紫瓤梢耘袛噙x項D,y=e然后,由圖像可知,y=-cosx在(0,+∞)上不單調,y=lg只有選項C:y=1-x【點睛】本題主要考查函數的性質,奇偶性和單調性。7、D【解析】

由平面向量基本定理及單位向量可得點在的外角平分線上,且點在的外角平分線上,,,在中,由正弦定理得得解.【詳解】因為所以,因為方向為外角平分線方向,所以點在的外角平分線上,同理,點在的外角平分線上,,,在中,由正弦定理得,故選:.【點睛】本題考查了平面向量基本定理及單位向量,考查向量的應用,意在考查學生對這些知識的理解掌握水平.8、C【解析】

根據兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質,可以求出的值.【詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【點睛】本題考查了已知兩直線平行求參數問題.其時本題也可以運用下列性質解題:若直線與直線平行,則有且.9、A【解析】試題分析:對A,函數在上為增函數,符合要求;對B,在上為減函數,不符合題意;對C,為上的減函數,不符合題意;對D,在上為減函數,不符合題意.故選A.考點:函數的單調性,容易題.10、B【解析】

寫出集合中的元素,分別判斷是否滿足即可得解.【詳解】集合且的元素,,,,,,.基本事件總數為,滿足方程的基本事件數為.故所求概率.故選:B.【點睛】本題考查了古典概型概率的求解,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個車間依次抽取a,b,c個樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.12、【解析】

用基本量法求出數列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設數列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數列的前項和的最值.首項為負且遞增的等差數列,滿足的最大的使得最小,首項為正且遞減的等差數列,滿足的最大的使得最大,當然也可把表示為的二次函數,由二次函數知識求得最值.13、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.14、【解析】

∵在△ABC中,∠ABC=60°,且AB=5,AC=7,

∴由余弦定理,可得:,

∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內角和定理及兩角和的余弦公式.15、2【解析】

由截得圓臺上,下底面積之比可得上,下底面半徑之比,再根據小圓錐的母線即可得圓臺母線.【詳解】設截得的圓臺的母線長為.因為截得的圓臺的上、下底面面積之比是1:4,所以截得的圓臺的上、下底面半徑之比是1:2.因為截去的小圓錐母線長為2,所以,解得.【點睛】本題考查求圓臺的母線,屬于基礎題.16、【解析】

觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關系和補角關系是解題的關鍵,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)從第27項開始(2)【解析】

(1)寫出通項公式解不等式即可;(2)由(1)得數列最后一個負項為取得最大值處即可求解【詳解】(1).解得.所以從第27項開始.(2)由上可知當時,最大,最大為.【點睛】本題考查等差數列的通項公式及前n項和的最值,考查推理能力,是基礎題18、(1),n∈N+;(2)【解析】

(1)設公比為q,q>0,運用等比數列的通項公式,解方程即可得到所求;(2),再由數列的裂項相消求和,計算可得所求和.【詳解】(1)數列是各項均為正數的等比數列,設公比為q,q>0,,.即,,解得,可得,n∈N+;(2),前n項和,由(1)可得a1=2,,即有.【點睛】本題考查數列的通項和求和,數列求和的常用方法有:分組求和,錯位相減求和,倒序相加求和等,本題解題關鍵是裂項的形式,本題屬于中等題.19、(1)(2)30°或90°.【解析】

(1)解法一:將圓的方程設為一般式,將題干三個點代入圓的方程,解出相應的參數值,即可得出圓的一般方程,再化為標準方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當直線的斜率存在時,設直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關于的方程,求出的值.結合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設圓的方程為,則∴即圓為,∴圓的標準方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標準方程為.(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當斜率存在時,設直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.20、(1)證明見解析;(2)證明見解析.【解析】

(1)通過證明得線面平行;(2)連接交于,連接,通過證明得線面平行.【詳解】(1)由題:四棱錐的底面為平行四邊形,所以,平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論