版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省邵東一中振華實驗學(xué)校高一下數(shù)學(xué)期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱錐中,平面,,,,,則三棱錐外接球的體積為()A. B. C. D.2.已知直線傾斜角的范圍是,則此直線的斜率的取值范圍是()A. B.C. D.3.過點且與原點距離最大的直線方程是()A. B.C. D.4.已知,則的值為()A. B. C. D.5.已知實數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.66.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.7.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.8.已知平面向量與的夾角為,且,則()A. B. C. D.9.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點,且平面,,中點軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.10.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,若當(dāng)時,的圖象與直線恰有兩個公共點,則的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若與的夾角是銳角,則實數(shù)的取值范圍為______.12.函數(shù)的定義域為__________;13.如果,,則的值為________(用分?jǐn)?shù)形式表示)14.已知向量,滿足,且在方向上的投影是,則實數(shù)_______.15.已知,則______;的最小值為______.16.已知,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,是正方形,是正方形的中心,底面是的中點.(1)求證:平面;(2)若,求三棱錐的體積.18.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.19.如圖,在三棱錐中,垂直于平面,.求證:平面.20.如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當(dāng)?shù)拈L度是多少時,矩形的面積最???并求最小面積.21.一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:溫度20253035產(chǎn)卵數(shù)/個520100325(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))參考數(shù)據(jù):,,,,,,,,,,5201003251.6134.615.78
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
在三棱錐中,求得,又由底面,所以,在直角中,求得,進(jìn)而得到三棱錐外接球的直徑,得到,利用體積公式,即可求解.【詳解】由題意知,在三棱錐中,,,,所以,又由底面,所以,在直角中,,所以,根據(jù)球的性質(zhì),可得三棱錐外接球的直徑為,即,所以球的體積為,故選B.【點睛】本題主要考查了與球有關(guān)的組合體中球的體積的計算,其中解答中根據(jù)組合體的結(jié)構(gòu)特征和球的性質(zhì),準(zhǔn)確求解球的半徑是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.2、B【解析】
根據(jù)直線的斜率等于傾斜角的正切值求解即可.【詳解】因為直線傾斜角的范圍是,又直線的斜率,.故或.故.故選:B【點睛】本題主要考查了直線斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.3、A【解析】
當(dāng)直線與垂直時距離最大,進(jìn)而可得直線的斜率,從而得到直線方程?!驹斀狻吭c坐標(biāo)為,根據(jù)題意可知當(dāng)直線與垂直時距離最大,由兩點斜率公式可得:所以所求直線的斜率為:故所求直線的方程為:,化簡可得:故答案選A【點睛】本題考查點到直線的距離公式,涉及直線的點斜式方程和一般方程,屬于基礎(chǔ)題。4、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.5、D【解析】
設(shè)點,根據(jù)條件知點均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標(biāo)式子進(jìn)行變形,發(fā)現(xiàn)其幾何意義為兩點到直線的距離之和有關(guān).【詳解】設(shè),,均在圓上,且,設(shè)的中點為,則點到原點的距離為,點在圓上,設(shè)到直線的距離分別為,,,.【點睛】利用數(shù)形結(jié)合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構(gòu)造系數(shù),才能看出目標(biāo)式子的幾何意義為兩點到直線距離之和的倍.6、A【解析】
根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因為,當(dāng)時,,當(dāng)時,單調(diào)遞增,且,故,即故選A.【點睛】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.7、C【解析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應(yīng)選答案C.8、A【解析】
根據(jù)平面向量數(shù)量積的運算法則,將平方運算可得結(jié)果.【詳解】∵,∴,∴cos=4,∴,故選A.【點睛】本題考查了利用平面向量的數(shù)量積求模的應(yīng)用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎(chǔ)題目.9、D【解析】
設(shè)的中點分別為,判斷出中點的軌跡是等邊三角形的高,由此計算出正三棱柱的邊長,進(jìn)而計算出正三棱柱的體積.【詳解】設(shè)的中點分別為,連接.由于平面,所以.當(dāng)時,中點為平面的中心,即的中點(設(shè)為點)處.當(dāng)時,此時的中點為的中點.所以點的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點睛】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.10、C【解析】
根據(jù)二倍角和輔助角公式化簡可得,根據(jù)平移變換原則可得;當(dāng)時,;利用正弦函數(shù)的圖象可知若的圖象與直線恰有兩個公共點可得,解不等式求得結(jié)果.【詳解】由題意得:由圖象平移可知:當(dāng)時,,,,,又的圖象與直線恰有兩個公共點,解得:本題正確選項:【點睛】本題考查根據(jù)交點個數(shù)求解角的范圍的問題,涉及到利用二倍角和輔助角公式化簡三角函數(shù)、三角函數(shù)圖象平移變換原則的應(yīng)用等知識;關(guān)鍵是能夠利用正弦函數(shù)的圖象,采用數(shù)形結(jié)合的方式確定角所處的范圍.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求出與的坐標(biāo),再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實數(shù)的取值范圍,.【詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【點睛】本題主要考查利用向量的數(shù)量積解決向量夾角有關(guān)的問題,以及數(shù)量積的坐標(biāo)表示,向量平行的條件等.條件的等價轉(zhuǎn)化是解題的關(guān)鍵.12、【解析】
根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎(chǔ)題.13、【解析】
先求出,可得,再代值計算即可.【詳解】.故答案為:【點睛】本題考查了等差數(shù)列的前項和公式、累乘相消法,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.14、1【解析】
在方向上的投影為,把向量坐標(biāo)代入公式,構(gòu)造出關(guān)于的方程,求得.【詳解】因為,所以,解得:,故填:.【點睛】本題考查向量的數(shù)量積定義中投影的概念、及向量數(shù)量積的坐標(biāo)運算,考查基本運算能力.15、50【解析】
由分段函數(shù)的表達(dá)式,代入計算即可;先求出的表達(dá)式,結(jié)合分段函數(shù)的性質(zhì),求最小值即可.【詳解】由,可得,,所以;由的表達(dá)式,可得,當(dāng)時,,此時,當(dāng)時,,由二次函數(shù)的性質(zhì)可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質(zhì),考查函數(shù)最值的計算,考查學(xué)生的計算能力,屬于基礎(chǔ)題.16、【解析】
由可得,然后用正弦的和差公式展開,然后將條件代入即可求出原式的值【詳解】因為所以故答案為:【點睛】本題考查的三角恒等變換,解決此類問題時要善于發(fā)現(xiàn)角之間的關(guān)系.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)由平面得出,由底面為正方形得出,再利用直線與平面垂直的判定定理可證明平面;(2)由勾股定理計算出,由點為線段的中點得知點到平面的距離等于,并計算出的面積,最后利用錐體的體積公式可計算出三棱錐的體積.【詳解】(1)平面,平面,,又為正方形,,又平面,平面,,平面;(2)由題意知:,又,,,點到面的距離為,.【點睛】本題考查直線與平面垂直的判定,考查三棱錐體積的計算,在計算三棱錐的體積時,充分利用題中的線面垂直關(guān)系和平面與平面垂直的關(guān)系,尋找合適的底面和高來進(jìn)行計算,考查計算能力與推理能力,屬于中等題.18、(1);(2)【解析】
(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導(dǎo)公式化簡所給的式子,再把代入,求得結(jié)果.【詳解】解:(1)因為角的終邊經(jīng)過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.19、證明見解析【解析】
分析:由線面垂直的性質(zhì)可得,結(jié)合,利用線面垂直的判定定理可得平面.詳解:∵面,在面內(nèi),∴,又∵,,∴面.點睛:證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.20、(1),;(2),.【解析】
(1)由可得,,∴.由,且,解得,∴函數(shù)的定義域為.(2)令,則,,當(dāng)且僅當(dāng)時,取最小值,故當(dāng)?shù)拈L度為米時,矩形花壇的面積最小,最小面積為96平方米.考點:1.分式不等式;2.均值不等式.21、(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型;(II);(III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下.【解析】
(I)由于散點圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對;兩邊取以為底底而得對數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計算公式計算出回歸直線方程,進(jìn)而化簡為回歸曲線方程.(III)令,解指數(shù)不等式求得溫度的控制范圍.【詳解】(I)依散點圖可知,選擇更適宜作為產(chǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康促進(jìn)的成本效益預(yù)測
- 金華浙江金華武義縣第二人民醫(yī)院招聘編外人員6人筆試歷年參考題庫附帶答案詳解
- 通遼2025年內(nèi)蒙古通遼市第三人民醫(yī)院招聘15人筆試歷年參考題庫附帶答案詳解
- 職業(yè)健康與心理健康的協(xié)同服務(wù)體系
- 石家莊2025年河北石家莊辛集市事業(yè)單位選聘20人筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北第二師范學(xué)院招聘26人筆試歷年參考題庫附帶答案詳解
- 池州2025年下半年安徽池州職業(yè)技術(shù)學(xué)院招聘工作人員34人筆試歷年參考題庫附帶答案詳解
- 昆明2025年云南昆明經(jīng)濟技術(shù)開發(fā)區(qū)招聘同工同酬聘用制教師134人筆試歷年參考題庫附帶答案詳解
- 成都2025年四川成都市公安局金牛區(qū)分局警務(wù)輔助人員招聘150人筆試歷年參考題庫附帶答案詳解
- 廣州廣東廣州市潭崗強制隔離戒毒所招聘編外人員筆試歷年參考題庫附帶答案詳解
- 乙醇購銷合同范本
- 醫(yī)保智能審核與醫(yī)院HIS系統(tǒng)融合方案
- 2023-2025年浙江中考數(shù)學(xué)試題分類匯編:圖形的性質(zhì)(解析版)
- 健康險精算模型的風(fēng)險調(diào)整-洞察與解讀
- 十年(2016-2025年)高考數(shù)學(xué)真題分類匯編:專題26 導(dǎo)數(shù)及其應(yīng)用解答題(原卷版)
- 2025年江蘇省常熟市中考物理試卷及答案詳解(名校卷)
- 2025年甘肅省中考物理、化學(xué)綜合試卷真題(含標(biāo)準(zhǔn)答案)
- DLT5210.1-2021電力建設(shè)施工質(zhì)量驗收規(guī)程第1部分-土建工程
- 機械設(shè)備租賃服務(wù)方案
- 電影放映年度自查報告
- 心內(nèi)介入治療護(hù)理
評論
0/150
提交評論