2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題含解析_第1頁
2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題含解析_第2頁
2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題含解析_第3頁
2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題含解析_第4頁
2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省贛州市寧都縣寧師中學高一數(shù)學第二學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.若長方體三個面的面積分別為2,3,6,則此長方體的外接球的表面積等于()A. B. C. D.3.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺4.若,則的最小值是()A. B. C. D.5.設向量滿足,且,則向量在向量方向上的投影為A.1 B. C. D.6.若過點,的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或47.在平面直角坐標系中,,分別是軸和軸上的動點,若直線恰好與以為直徑的圓相切,則圓面積的最小值為()A. B. C. D.8.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角9.若點在點的北偏東70°,點在點的南偏東30°,且,則點在點的()方向上.A.北偏東20° B.北偏東30° C.北偏西30° D.北偏西15°10.已知,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)y=tan12.夏季某座高山上的溫度從山腳起每升高100米降低0.8度,若山腳的溫度是36度,山頂?shù)臏囟仁?0度,則這座山的高度是________米13.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為________.14.若在等比數(shù)列中,,則__________.15.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.16.已知函數(shù)的圖象如下,則的值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列的前項和,數(shù)列為等比數(shù)列,且.(1)求數(shù)列和的通項公式;(2)設,求數(shù)列的前項和.18.某大學要修建一個面積為的長方形景觀水池,并且在景觀水池四周要修建出寬為2m和3m的小路如圖所示問如何設計景觀水池的邊長,能使總占地面積最???并求出總占地面積的最小值.19.如圖,平行四邊形中,,分別是,的中點,為與的交點,若,,試以,為基底表示、、.20.在中,,且.(1)求邊長;(2)求邊上中線的長.21.在中,角對應的邊分別是,且.(1)求的周長;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用誘導公式,的圖象變換規(guī)律,得出結論.【詳解】為了得到函數(shù)的圖象,

只需將函數(shù)圖象上所有的點向左平移個單位長度,

故選C.2、C【解析】

設長方體過一個頂點的三條棱長分別為,,,由已知面積求得,,的值,得到長方體對角線長,進一步得到外接球的半徑,則答案可求.【詳解】設長方體過一個頂點的三條棱長分別為,,,則,解得,,.長方體的對角線長為.則長方體的外接球的半徑為,此長方體的外接球的表面積等于.故選:C.【點睛】本題考查長方體外接球表面積的求法,考查空間想象能力和運算求解能力,求解時注意長方體的對角線長為長方體外接球的直徑.3、C【解析】

試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.4、A【解析】,則,當且僅當取等號.所以選項是正確的.點睛:本題主要考查基本不等式,其難點主要在于利用三角形的一邊及這條邊上的高表示內(nèi)接正方形的邊長.在用基本不等式求最值時,應具備三個條件:一正二定三相等.①一正:關系式中,各項均為正數(shù);②二定:關系式中,含變量的各項的和或積必須有一個為定值;③三相等:含變量的各項均相等,取得最值.5、D【解析】

先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【詳解】因為,,所以,所以,故向量在向量方向上的投影為.故選D【點睛】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于??碱}型.6、A【解析】

首先設一條與已知直線平行的直線,點,代入直線方程即可求出的值.【詳解】設與直線平行的直線:,點,代入直線方程,有.故選:A.【點睛】本題考查了利用直線的平行關系求參數(shù),屬于基礎題.注意直線與直線在時相互平行.7、A【解析】

根據(jù)題意畫出圖像,數(shù)形結合,根據(jù)圓面積最小的條件轉(zhuǎn)化為直徑等于原點到直線的距離,再求解圓面積即可.【詳解】根據(jù)題意畫出圖像如圖所示,圓心為線段中點,為直角三角形,所以,作直線且交于點,直線與圓相切,所以,要使圓面積的最小,即使半徑最小,由圖知,當點、、共線時,圓的半徑最小,此時原點到直線的距離為,由點到直線的距離公式:,解得,所以圓面積的最小值.故選:A【點睛】本題主要考查點到直線距離公式和圓切線的應用,考查學生分析轉(zhuǎn)化能力和數(shù)形結合的思想,屬于中檔題.8、D【解析】

根據(jù)象限角寫出的取值范圍,討論即可知在第一或第三象限角【詳解】依題意得,則,當時,是第一象限角當時,是第三象限角【點睛】本題主要考查象限角,屬于基礎題.9、A【解析】

作出方位角,根據(jù)等腰三角形的性質(zhì)可得.【詳解】如圖,,,則,∵,∴,而,∴∴點在點的北偏東20°方向上.故選:A.【點睛】本題考查方位角概念,掌握方位角的定義是解題基礎.方位角是以南北向為基礎,北偏東,北偏西,南偏東,南偏西等等.10、B【解析】

利用誘導公式求得tanα,再利用同角三角函數(shù)的基本關系求得要求式子的值.【詳解】∵已知tanα,∴tanα,則,故選B.【點睛】本題主要考查應用誘導公式、同角三角函數(shù)的基本關系的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.12、2000【解析】

由題意得,溫度下降了,再求出這個溫度是由幾段100米得出來的,最后乘以100即可.【詳解】由題意得,這座山的高度為:米故答案為:2000【點睛】本題結合實際問題考查有理數(shù)的混合運算,解題關鍵是溫度差里有幾個0.8,屬于基礎題.13、【解析】

求出的垂直平分線方程,兩垂直平分線交點為外接圓圓心.再由兩點間距離公式計算.【詳解】由點B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標為,其到原點的距離為.故答案為:【點睛】本題考查三角形外接圓圓心坐標,外心是三角形三條邊的中垂線的交點,到三頂點距離相等.14、【解析】

根據(jù)等比中項的性質(zhì),將等式化成即可求得答案.【詳解】是等比數(shù)列,若,則.因為,所以,.故答案為:1.【點睛】本題考查等比中項的性質(zhì),考查基本運算求解能力,屬于容易題.15、【解析】

取中點,中點,易得面,再求出到平面的距離,進而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【詳解】如圖,取中點,中點,連接.因為,,所以.因為,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因為,所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【點睛】本題主要考查了空間中線面垂直的性質(zhì)與運用,同時也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點到面的距離求解,再求出線面的夾角.屬于難題.16、【解析】

由函數(shù)的圖象的頂點坐標求出,由半個周期求出,最后將特殊點的坐標求代入解析式,即可求得的值.【詳解】解:由圖象可得,,得.,將點代入函數(shù)解析式,得,,,又因為,所以故答案為:【點睛】本題考查由的部分圖象確定其解析式.(1)根據(jù)函數(shù)的最高點的坐標確定(2)根據(jù)函數(shù)零點的坐標確定函數(shù)的周期求(3)利用最值點的坐標同時求的取值,即可得到函數(shù)的解析式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)通過求解數(shù)列的通項公式,從而可以求出首項與公比,即可得到的通項公式;(2)化簡,利用錯位相減法求解數(shù)列的和即可.【詳解】(1)∴,∴,∵,∴,∴,,∵,,∴,從而,∵數(shù)列為等比數(shù)列∴數(shù)列的公比為,從而;(2)∵,,∴∴∴,∴.【點睛】本題考查已知求的通項公式以及數(shù)列求和,考查計算能力.在通過求的通項公式時,不要忽略時的情況.18、水池一邊長為12m,另一邊為18m,總面積為最小,為.【解析】

設水池一邊長為xm,則另一邊為,表示出面積利用基本不等式求解即可.【詳解】設水池一邊長為xm,則另一邊為,總面積,當且僅當時取等號,故水池一邊長為12m,則另一邊為18m,總面積為最小,為,【點睛】本題考查函數(shù)在實際問題中的應用,基本不等式的應用,考查計算能力.19、【解析】分析:直接利用共線向量的性質(zhì)、向量加法與減法的三角形法則求解即可.詳解:由題意,如圖,,連接,則是的重心,連接交于點,則是的中點,∴點在上,∴,故答案為;;∴.點睛:向量的運算有兩種方法,一是幾何運算往往結合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單).20、(1);(2).【解析】

(1)利用同角的三角函數(shù)關系,可以求出的值,利用三角形內(nèi)角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出長;(2)利用余弦定理可以求出的長,進而可以求出的長,然后在中,再利用余弦定理求出邊上中線的長.【詳解】(1),,由正弦定理可知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論