上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷含解析_第1頁
上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷含解析_第2頁
上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷含解析_第3頁
上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷含解析_第4頁
上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市松江區(qū)第七中學2024年中考押題數(shù)學預測卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個2.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定3.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數(shù)據(jù)30億用科學記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10104.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.45.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.86.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.7.一元二次方程的根的情況是()A.有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根8.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.9.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.10.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤411.下列圖形中,主視圖為①的是()A. B. C. D.12.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()

A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數(shù),當x<0時,y隨x的增大而_____.14.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的正弦值為__.15.將代入函數(shù)中,所得函數(shù)值記為,又將代入函數(shù)中,所得的函數(shù)值記為,再將代入函數(shù)中,所得函數(shù)值記為…,繼續(xù)下去.________;________;________;________.16.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.17.分式方程x2x-1=1-218.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)20.(6分)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.21.(6分)解不等式組:并求它的整數(shù)解的和.22.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.23.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.24.(10分)如圖,△ABC中AB=AC,請你利用尺規(guī)在BC邊上求一點P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).25.(10分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.26.(12分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.27.(12分)解不等式,并把解集在數(shù)軸上表示出來.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.2、B.【解析】試題解析:∵OP=5,∴根據(jù)點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關系;2.坐標與圖形性質.3、A【解析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學記數(shù)法表示為,故選A.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.5、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.6、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.7、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數(shù)根;故選D.考點:根的判別式.8、B【解析】

先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.9、D【解析】

根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.11、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個選項中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項錯誤;B、主視圖是長方形,故此選項正確;C、主視圖是等腰梯形,故此選項錯誤;D、主視圖是三角形,故此選項錯誤;故選B.點睛:此題主要考查了簡單幾何體的主視圖,關鍵是掌握主視圖所看的位置.12、B【解析】

因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點P是線段AB垂直平分線和圓的交點,

∴當C在⊙O上運動時,點P不動.

故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、減小【解析】

先根據(jù)反比例函數(shù)的性質判斷出函數(shù)的圖象所在的象限,再根據(jù)反比例函數(shù)的性質進行解答即可.【詳解】解:∵反比例函數(shù)中,∴此函數(shù)的圖象在一、三象限,在每一象限內(nèi)y隨x的增大而減小.故答案為減小.【點睛】考查反比例函數(shù)的圖象與性質,反比例函數(shù)當時,圖象在第一、三象限.在每個象限,y隨著x的增大而減小,當時,圖象在第二、四象限.在每個象限,y隨著x的增大而增大.14、【解析】

首先利用勾股定理計算出AB2,BC2,AC2,再根據(jù)勾股定理逆定理可證明∠BCA=90°,然后得到∠ABC的度數(shù),再利用特殊角的三角函數(shù)可得∠ABC的正弦值.【詳解】解:連接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值為.故答案為:.【點睛】此題主要考查了銳角三角函數(shù),以及勾股定理逆定理,關鍵是掌握特殊角的三角函數(shù).15、22【解析】

根據(jù)數(shù)量關系分別求出y1,y2,y3,y4,…,不難發(fā)現(xiàn),每3次計算為一個循環(huán)組依次循環(huán),用2006除以3,根據(jù)商和余數(shù)的情況確定y2006的值即可.【詳解】y1=,

y2=?=2,

y3=?=,

y4=?=,

…,

∴每3次計算為一個循環(huán)組依次循環(huán),

∵2006÷3=668余2,

∴y2006為第669循環(huán)組的第2次計算,與y2的值相同,

∴y2006=2,

故答案為;2;;2.【點睛】本題考查反比例函數(shù)的定義,解題的關鍵是多運算找規(guī)律.16、25°【解析】

連接BC,BD,根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【點睛】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.17、x=﹣1.【解析】試題分析:分式方程變形后,去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.試題解析:去分母得:x=2x﹣1+2,解得:x=﹣1,經(jīng)檢驗x=﹣1是分式方程的解.考點:解分式方程.18、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、2.1.【解析】

據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據(jù)題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設x>0”,則此處應“x=±,舍負”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應用,坡面坡角問題和勾股定理,解題的關鍵是坡度等于坡角的正切值.20、(1)本次抽樣調(diào)查中的學生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4).【解析】

(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總人數(shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計該校課余興趣愛好為“打球”的學生人數(shù);(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出選到一男一女的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為100×10%=10(人),選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),補全條形統(tǒng)計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中選到一男一女的結果數(shù)為8,所以選到一男一女的概率=.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,列表法與樹狀圖法求概率,讀懂統(tǒng)計圖,從中找到有用的信息是解題的關鍵.本題中還用到了知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、0【解析】分析:先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可求出不等式組的解集.詳解:,由①去括號得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,則不等式組的解集為﹣2<x≤1.點睛:本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.22、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.23、(1)證明見解析;(2)CE=1.【解析】

(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.

(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC.

∴∠OBE=∠EBC,

∴∠OEB=∠EBC,

∴OE∥BC,

∵∠ACB=90°,

∴∠OEA=∠ACB=90°,

∴AC是⊙O的切線.

(2)解:過O作OH⊥BF,

∴BH=BF=3,四邊形OHCE是矩形,

∴CE=OH,

在Rt△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論