安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽鳳陽縣城西中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小正周期為π,若其圖象向左平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象()A.關(guān)于點對稱 B.關(guān)于點對稱C.關(guān)于直線對稱 D.關(guān)于直線對稱2.設(shè)集合,,則()A. B. C. D.3.已知函數(shù)()的最小正周期為,則該函數(shù)的圖象()A.關(guān)于直線對稱 B.關(guān)于直線對稱C.關(guān)于點對稱 D.關(guān)于點對稱4.設(shè)數(shù)列是公差不為零的等差數(shù)列,它的前項和為,且、、成等比數(shù)列,則等于()A. B. C. D.5.預測人口的變化趨勢有多種方法,“直接推算法”使用的公式是(),為預測人口數(shù),為初期人口數(shù),為預測期內(nèi)年增長率,為預測期間隔年數(shù).如果在某一時期有,那么在這期間人口數(shù)A.呈下降趨勢 B.呈上升趨勢 C.擺動變化 D.不變6.如圖,A,B是半徑為1的圓周上的定點,P為圓周上的動點,∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos7.已知點,直線方程為,且直線與線段相交,求直線的斜率k的取值范圍為()A.或 B.或C. D.8.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.9.已知數(shù)列滿足遞推關(guān)系,則()A. B. C. D.10.已知數(shù)列的前項和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列五個命題:①函數(shù)的一條對稱軸是;②函數(shù)的圖象關(guān)于點(,0)對稱;③正弦函數(shù)在第一象限為增函數(shù);④若,則,其中;⑤函數(shù)的圖像與直線有且僅有兩個不同的交點,則的取值范圍為.以上五個命題中正確的有(填寫所有正確命題的序號)12.在中,若,則____________.13.已知函數(shù),(常數(shù)、),若當且僅當時,函數(shù)取得最大值1,則實數(shù)的數(shù)值為______.14.在梯形中,,,設(shè),,則__________(用向量表示).15.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).16.已知正三棱柱木塊,其中,,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達點,當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,經(jīng)過村莊有兩條夾角為的公路,根據(jù)規(guī)劃要在兩條公路之間的區(qū)域內(nèi)修建一工廠,分別在兩條公路邊上建兩個倉庫(異于村莊),要求(單位:千米),記.(1)將用含的關(guān)系式表示出來;(2)如何設(shè)計(即為多長時),使得工廠產(chǎn)生的噪聲對居民影響最小(即工廠與村莊的距離最大)?18.已知圓,為坐標原點,動點在圓外,過點作圓的切線,設(shè)切點為.(1)若點運動到處,求此時切線的方程;(2)求滿足的點的軌跡方程.19.某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):季度季度編號x銷售額y(百萬元)(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;(2)求關(guān)于的線性回歸方程,并預測該公司的銷售額.附:線性回歸方程:其中,參考數(shù)據(jù):.20.如圖,在三棱錐中,側(cè)面與側(cè)面均為邊長為2的等邊三角形,,為中點.(1)證明:;(2)求點到平面的距離.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用最小正周期為π,求出的值,根據(jù)平移得出,然后利用對稱性求解.【詳解】因為函數(shù)的最小正周期為π,所以,圖象向左平移個單位后得到,由得到的函數(shù)是奇函數(shù)可得,即.令得,,故A,B均不正確;令得,,時可得C正確.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換和性質(zhì).平移變換時注意平移方向和對解析式的影響,性質(zhì)求解一般利用整體換元意識來處理.2、D【解析】試題分析:集合,集合,所以,故選D.考點:1、一元二次不等式;2、集合的運算.3、D【解析】∵函數(shù)()的最小正周期為,∴,,令,,,,顯然A,B錯誤;令,可得:,,顯然時,D正確故選D4、A【解析】

設(shè)等差數(shù)列的公差為,根據(jù)得出與的等量關(guān)系,即可計算出的值.【詳解】設(shè)等差數(shù)列的公差為,由于、、成等比數(shù)列,則有,所以,,化簡得,因此,.故選:A.【點睛】本題考查等差數(shù)列前項和中基本量的計算,解題的關(guān)鍵就是結(jié)合題意得出首項與公差的等量關(guān)系,考查計算能力,屬于基礎(chǔ)題.5、A【解析】

可以通過與之間的大小關(guān)系進行判斷.【詳解】當時,,所以,呈下降趨勢.【點睛】判斷變化率可以通過比較初始值與變化之后的數(shù)值之間的大小來判斷.6、B【解析】

由正弦定理可得,,則,,當點在的中垂線上時,取得最大值,此時的面積最大,求解即可.【詳解】在中,由正弦定理可得,,則.,當點在的中垂線上時,取得最大值,此時的面積最大.取的中點,過點作的垂線,交圓于點,取圓心為,則(為銳角),.所以的面積最大為.故選B.【點睛】本題考查了三角形的面積的計算、正弦定理的應用,考查了三角函數(shù)的化簡,考查了計算能力,屬于基礎(chǔ)題.7、A【解析】

先求出線段的方程,得出,在直線的方程中得到,將代入的表達式,利用不等式的性質(zhì)求出的取值范圍.【詳解】易求得線段的方程為,得,由直線的方程得,當時,,此時,;當時,,此時,.因此,實數(shù)的取值范圍是或,故選A.【點睛】本題考查斜率取值范圍的計算,可以利用數(shù)形結(jié)合思想,觀察傾斜角的變化得出斜率的取值范圍,也可以利用參變量分離,得出斜率的表達式,利用不等式的性質(zhì)得出斜率的取值范圍,考查計算能力,屬于中等題.8、D【解析】

由函數(shù)圖象求出,由周期求出,由五點發(fā)作圖求出的值,即可求出函數(shù)的解析式.【詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點法作圖可得,所以,故.故選:D.【點睛】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.9、B【解析】

兩邊取倒數(shù),可得新的等差數(shù)列,根據(jù)等差數(shù)列的通項公式,可得結(jié)果.【詳解】由,所以則,又,所以所以數(shù)列是以2為首項,1為公比的等差數(shù)列所以,則所以故選:B【點睛】本題主要考查由遞推公式得到等差數(shù)列,難點在于取倒數(shù),學會觀察,屬基礎(chǔ)題.10、D【解析】

利用即可求得:,當時,或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【詳解】因為,當時,,解得,當時,,整理有,,所以或若時,滿足,時,滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【點睛】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.二、填空題:本大題共6小題,每小題5分,共30分。11、①②⑤【解析】試題分析:①將代入可得函數(shù)最大值,為函數(shù)對稱軸;②函數(shù)的圖象關(guān)于點對稱,包括點;③,③錯誤;④利用誘導公式,可得不同于的表達式;⑤對進行討論,利用正弦函數(shù)圖象,得出函數(shù)與直線僅有有兩個不同的交點,則.故本題答案應填①②⑤.考點:三角函數(shù)的性質(zhì).【知識點睛】本題主要考查三角函數(shù)的圖象性質(zhì).對于和的最小正周期為.若為偶函數(shù),則當時函數(shù)取得最值,若為奇函數(shù),則當時,.若要求的對稱軸,只要令,求.若要求的對稱中心的橫坐標,只要令即可.12、2【解析】

根據(jù)正弦定理角化邊可得答案.【詳解】由正弦定理可得.故答案為:2【點睛】本題考查了正弦定理角化邊,屬于基礎(chǔ)題.13、-1【解析】

先將函數(shù)轉(zhuǎn)化成同名三角函數(shù),再結(jié)合二次函數(shù)性質(zhì)進行求解即可【詳解】令,,對稱軸為;當時,時函數(shù)值最大,,解得;當時,對稱軸為,函數(shù)在時取到最大值,與題設(shè)矛盾;當時,時函數(shù)值最大,,解得;故的數(shù)值為:-1故答案為:-1【點睛】本題考查換元法在三角函數(shù)中的應用,分類討論求解函數(shù)最值,屬于中檔題14、【解析】

根據(jù)向量減法運算得結(jié)果.【詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【點睛】本題考查向量表示,考查基本化解能力15、<【解析】

直接利用作差比較法解答.【詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點睛】本題主要考查作差比較法,意在考查學生對這些知識的理解掌握水平和分析推理能力.16、【解析】

將正三棱柱的側(cè)面沿棱展開成平面,連接與的交點即為滿足最小時的點,可知點為棱的中點,即可計算出沿著螞蟻走過的路徑截開木塊時兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開成平面,連接與的交點即為滿足最小時的點.由于,,再結(jié)合棱柱的性質(zhì),可得,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達點,當沿螞蟻走過的最短路徑,為的中點,因為三棱柱是正三棱柱,所以當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為:.故答案為:.【點睛】本題考查棱柱側(cè)面最短路徑問題,涉及棱柱側(cè)面展開圖的應用以及幾何體體積的計算,考查分析問題解決問題能力,是中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)根據(jù)正弦定理,得到,進而可求出結(jié)果;(2)由余弦定理,得到,結(jié)合題中數(shù)據(jù),得到,取最大值時,噪聲對居民影響最小,即可得出結(jié)果.【詳解】(1)因為,在中,由正弦定理可得:,所以,;(2)由題意,由余弦定理可得:,又由(1)可得,所以,當且僅當,即時,取得最大值,工廠產(chǎn)生的噪聲對居民影響最小,此時.【點睛】本題主要考查正弦定理與余弦定理的應用,熟記正弦定理與余弦定理即可,屬于??碱}型.18、(1)或;(2).【解析】

解:把圓C的方程化為標準方程為(x+1)2+(y-2)2=4,∴圓心為C(-1,2),半徑r=2.(1)當l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=r,滿足條件.當l的斜率存在時,設(shè)斜率為k,得l的方程為y-3=k(x-1),即kx-y+3-k=0,則=2,解得k=.∴l(xiāng)的方程為y-3=(x-1),即3x+4y-15=0.綜上,滿足條件的切線l的方程為或.(2)設(shè)P(x,y),則|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴點P的軌跡方程為.考點:直線與圓的位置關(guān)系;圓的切線方程;點的軌跡方程.19、(1);(2)關(guān)于的線性回歸方程為,預測該公司的銷售額為百萬元.【解析】

(1)列舉出所有的基本事件,并確定事件“這個季度的銷售額都超過千萬元”然后利用古典概型的概率公式可計算出所求事件的概率;(2)計算出和的值,然后將表格中的數(shù)據(jù)代入最小二乘法公式,計算出和的值,可得出關(guān)于的線性回歸方程,然后將代入回歸直線方程即可得出該公司的銷售額的估計值.【詳解】(1)從個季度的數(shù)據(jù)中任選個季度,這個季度的銷售額有種情況:、、、、、、、、、設(shè)“這個季度的銷售額都超過千萬元”為事件,事件包含、、,種情況,所以;(2),,,.所以關(guān)于的線性回歸方程為,令,得(百萬元)所以預測該公司的銷售額為百萬元.【點睛】本題考查利用古典概型的概率公式計算事件的概率,同時也考查了利用最小二乘法求回歸直線方程,同時也考查了回歸直線方程的應用,考查計算能力,屬于中等題.20、(1)見解析;(2)【解析】

(1)由題設(shè)AB=AC=SB=SC=SA,連結(jié)OA,推導出SO⊥BC,SO⊥AO,由此能證明SO⊥平面ABC;(2)設(shè)點B到平面SAC的距離為h,由VS﹣BAC=VB﹣SAC,能求出點B到平面SAC的距離.【詳解】(1)由題設(shè),連結(jié),為等腰直角三角形,所以,且,又為等腰三角形,故,且,從而.所以為直角三角形,.又.所以平面,故AC⊥SO.(2)設(shè)B到平面SAC的距離為,則由(Ⅰ)知:三棱錐即∵為等腰直角三角形,且腰長為2.∴∴∴△SAC的面積為=△ABC面積為,∴,∴B到平面SA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論