版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北保定市2025屆高一下數(shù)學期末質量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B.7 C. D.2.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.193.函數(shù)的最大值為A.4 B.5 C.6 D.74.將甲、乙兩個籃球隊5場比賽的得分數(shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等5.若,下列不等式一定成立的是()A. B. C. D.6.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.67.已知點在第二象限,角頂點為坐標原點,始邊為軸的非負半軸,則角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于的概率是()A. B. C. D.9.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一比值也可以表示為a=2cos72°,則=()A. B.1 C.2 D.10.已知x,y滿足約束條件,則的最大值是()A.-1 B.-2 C.-5 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.設數(shù)列的通項公式為,則_____.12.在平面直角坐標系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.13.若點關于直線的對稱點在函數(shù)的圖像上,則稱點、直線及函數(shù)組成系統(tǒng),已知函數(shù)的反函數(shù)圖像過點,且第一象限內的點、直線及函數(shù)組成系統(tǒng),則代數(shù)式的最小值為________.14.若,,則的值為______.15.已知不等式x2-x-a>0的解集為x|x>3或16.設等差數(shù)列的前項和為,若,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場的宣傳活動,應從第,,組各抽取多少名志愿者?(2)在(1)的條件下,該市決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組志愿者有被抽中的概率.18.已知向量,,.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的x的集合.19.知兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求當m為何值時,l1與l2:(1)垂直;(2)平行,并求出兩平行線間的距離.20.設,,.(1)若,求實數(shù)的值;(2)若,求實數(shù)的值.21.設數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由平方關系求得,再由商數(shù)關系求得,最后由兩角和的正切公式可計算.【詳解】,,,,.故選:D.【點睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關系.屬于基礎題.2、C【解析】
先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質與求和公式即可,屬于??碱}型.3、B【解析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質、二次函數(shù)的性質【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.4、C【解析】
由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎題.5、D【解析】
通過反例、作差法、不等式的性質可依次判斷各個選項即可.【詳解】若,,則,錯誤;,則,錯誤;,,則,錯誤;,則等價于,成立,正確.本題正確選項:【點睛】本題考查不等式的性質,屬于基礎題.6、C【解析】
由題意作出不等式組所表示的平面區(qū)域,將化為,相當于直線的縱截距,由幾何意義可得結果.【詳解】由題意作出其平面區(qū)域,令,化為,相當于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.7、C【解析】
根據(jù)點的位置,得到不等式組,進行判斷角的終邊落在的位置.【詳解】點在第二象限在第三象限,故本題選C.【點睛】本題考查了通過角的正弦值和正切值的正負性,判斷角的終邊位置,利用三角函數(shù)的定義是解題的關鍵.8、C【解析】
記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據(jù)三角形的面積關系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因為,則有;化簡得:,因為,則由三角形的相似性得,所以,事件的幾何度量為線段的長度,因為,所以的面積大于的概率.故選:C【點睛】本題考查幾何概型,屬于基礎題.常有以下一些方面需考慮幾何概型,求解時需注意一些要點.(1)當試驗的結果構成的區(qū)域為長度、面積、體積等時,應考慮使用幾何概型求解.(2)利用幾何概型求概率時,關鍵是試驗的全部結果構成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設出變量,在坐標系中表示所需要的區(qū)域。(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用"比例解法求解幾何概型的概率.9、A【解析】
根據(jù)已知利用同角三角函數(shù)基本關系式,二倍角公式、誘導公式化簡即可求值得解.【詳解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°?2sin72°=2sin144°=2sin36°,∴.故選:A.【點睛】本題主要考查了同角三角函數(shù)基本關系式,二倍角公式、誘導公式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.10、A【解析】根據(jù)題意作出約束條件確定的可行域,如下圖:令,可知在圖中處,取到最大值-1,故選A.考點:本題主要考查了簡單的線性規(guī)劃.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)數(shù)列的通項式求出前項和,再極限的思想即可解決此題?!驹斀狻繑?shù)列的通項公式為,則,則答案.故為:.【點睛】本題主要考查了給出數(shù)列的通項式求前項和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、列項相消等。本題主要利用了分組求和的方法。12、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式.13、【解析】
根據(jù)函數(shù)的反函數(shù)圖像過點可求出,由、直線及函數(shù)組成系統(tǒng)可知在的圖象上,且,代入化簡為,換元則,利用單調性求解.【詳解】因為函數(shù)的反函數(shù)圖像過點,所以,即,由、直線及函數(shù)組成系統(tǒng)知在上,所以,代入化簡得,令由知,故則在上單調遞減,所以當即時,,故填.【點睛】本題主要考查了對稱問題,反函數(shù)概念,根據(jù)條件求最值,函數(shù)的單調性,換元法,綜合性大,難度大,屬于難題.14、【解析】
求出,將展開即可得解.【詳解】因為,,所以,所以.【點睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎題.15、6【解析】
由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點睛】本題主要考查一元二次不等式的解,意在考查學生對該知識的理解掌握水平,屬于基礎題.16、10【解析】
將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【詳解】設該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點睛】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)分別抽取人,人,人;(2)【解析】
(1)頻率分布直方圖各組頻率等于各組矩形的面積,進而算出各組頻數(shù),再根據(jù)分層抽樣總體及各層抽樣比例相同求解;(2)列出從名志愿者中隨機抽取名志愿者所有的情況,再根據(jù)古典概型概率公式求解.【詳解】(1)第組的人數(shù)為,第組的人數(shù)為,第組的人數(shù)為,因為第,,組共有名志愿者,所以利用分層抽樣的方法在名志愿者中抽取名志愿者,每組抽取的人數(shù)分別為:第組:;第組:;第組:.所以應從第,,組中分別抽取人,人,人.(2)設“第組的志愿者有被抽中”為事件.記第組的名志愿者為,,,第組的名志愿者為,,第組的名志愿者為,則從名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有種.其中第組的志愿者被抽中的有種,答:第組的志愿者有被抽中的概率為【點睛】本題考查頻率分布直方圖,分層抽樣和古典概型,注意列舉所有情況時不要遺漏.18、(1)值域為.(2)【解析】
(1)由向量,,利用數(shù)量積運算得到;由,得到,利用整體思想轉化為正弦函數(shù)求值域.(2)不等式,轉化為,利用整體思想,轉化為三角不等式,利用單位圓或正弦函數(shù)的圖象求解.【詳解】(1)因為,,所以.因為,所以,所以,所以,所以在區(qū)間上的值域為.(2)由,得,即.所以,解得,不等式的解集為.【點睛】本題主要考查了向量與三角函數(shù)的綜合應用,還考查了運算求解的能力,屬于中檔題.19、(1)m(2)m=﹣7,距離為【解析】
(1)由題意利用兩條直線垂直的性質,求出m的值.(2)由題意利用兩條直線平行的性質,求出m的值,再利用兩平行線間的距離公式,求出結果.【詳解】(1)兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,當(3+m)?2+4(5+m)=0時,即6m+26=0時,l1與l2垂直,即m時,l1與l2垂直.(2)當時,l1與l2平行,即m=﹣7時,l1與l2平行,此時,兩條直線l1:﹣2x+2y=13,l2:﹣2x+2y=﹣8,此時,兩平行線間的距離為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026 年規(guī)范化離婚協(xié)議書標準范本
- 麻精藥品培訓考試試題測試題庫含答案
- 環(huán)保高端培訓課件
- 市政污泥處置及污泥再利用項目可行性研究報告
- 環(huán)保業(yè)務咨詢介紹
- 《GAT 2000.347-2024公安信息代碼 第347部分:數(shù)據(jù)服務資源標識符編碼規(guī)則》專題研究報告
- 公路項目建議書
- 鈉離子電池生產(chǎn)線項目規(guī)劃設計方案
- 城市地下管網(wǎng)更新改造項目投資計劃書
- 鋼結構幕墻風壓測試技術方案
- 2026年重慶市江津區(qū)社區(qū)專職人員招聘(642人)筆試備考試題及答案解析
- 2026年思明區(qū)公開招聘社區(qū)工作者考試備考題庫及完整答案詳解1套
- 【四年級】【數(shù)學】【秋季上】期末家長會:數(shù)海引航愛伴成長【課件】
- 小學音樂教師年度述職報告范本
- 2025年新版八年級上冊歷史期末考試模擬試卷試卷 3套(含答案)
- 2026福建廈門市校園招聘中小學幼兒園中職學校教師346人筆試參考題庫及答案解析
- 2025年合肥經(jīng)開投資促進有限公司公開招聘11人筆試參考題庫及答案解析
- 儲能電站電力銷售協(xié)議2025
- 北京市社保信息化發(fā)展評估研究報告
- GB/T 8336-2011氣瓶專用螺紋量規(guī)
- GB/T 1048-2019管道元件公稱壓力的定義和選用
評論
0/150
提交評論