2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題含解析_第1頁
2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題含解析_第2頁
2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題含解析_第3頁
2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題含解析_第4頁
2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省合肥市七中、合肥十中高一數(shù)學第二學期期末經典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設為等差數(shù)列的前項和,.若,則()A.的最大值為 B.的最小值為 C.的最大值為 D.的最小值為2.已知實數(shù),,,則()A. B. C. D.3.某興趣小組合作制作了一個手工制品,并將其繪制成如圖所示的三視圖,其中側視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.4.已知,其中,若函數(shù)在區(qū)間內有零點,則實數(shù)的取值可能是()A. B. C. D.5.已知,取值如下表:014561.3m3m5.67.4畫散點圖分析可知:與線性相關,且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.86.已知實數(shù),滿足,,且,,成等比數(shù)列,則有()A.最大值 B.最大值 C.最小值 D.最小值7.從2名男同學和3名女同學中任選2人參加社區(qū)服務,則選中的2人都是女同學的概率為A. B. C. D.8.在中,角A、B、C所對的邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則()A. B. C. D.9.把等差數(shù)列1,3,5,7,9,…依次分組,按第一個括號一個數(shù),第二個括號二個數(shù),第三個括號三個數(shù),第四個括號一個數(shù),…循環(huán)分為,,,,,,,…,則第11個括號內的各數(shù)之和為()A.99 B.37 C.135 D.8010.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是內的一點,,,則_______;若,則_______.12.若函數(shù),則__________.13.無窮等比數(shù)列的首項是某個正整數(shù),公比為單位分數(shù)(即形如:的分數(shù),為正整數(shù)),若該數(shù)列的各項和為3,則________.14.若則____________15.已知,則與的夾角等于___________.16.已知,,若,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)求的坐標;(2)求.18.某種產品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):245683040605070(1)畫出散點圖;(2)求線性回歸方程;(3)試預測廣告費支出為10萬元時,銷售額為多少?附:公式為:,參考數(shù)字:,.19.如圖,是以向量為邊的平行四邊形,又,試用表示.20.若數(shù)列滿足:對于,都有(為常數(shù)),則稱數(shù)列是公差為的“隔項等差”數(shù)列.(Ⅰ)若,是公差為8的“隔項等差”數(shù)列,求的前項之和;(Ⅱ)設數(shù)列滿足:,對于,都有.①求證:數(shù)列為“隔項等差”數(shù)列,并求其通項公式;②設數(shù)列的前項和為,試研究:是否存在實數(shù),使得成等比數(shù)列()?若存在,請求出的值;若不存在,請說明理由.21.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點,且,若為的角平分線,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由已知條件推導出(n2﹣n)d<2n2d,從而得到d>0,所以a1<0,a8>0,由此求出數(shù)列{Sn}中最小值是S1.【詳解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0數(shù)列的前1項為負,故數(shù)列{Sn}中最小值是S1故選C.【點睛】本題考查等差數(shù)列中前n項和最小值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質的靈活運用.2、C【解析】

先得出,,,然后利用在上的單調性即可比較出的大小.【詳解】因為所以,,因為且在上單調遞增所以故選:C【點睛】利用函數(shù)單調性比較函數(shù)值大小的時候,應將自變量轉化到同一個單調區(qū)間內.3、D【解析】

由三視圖可知,得到該幾何體是由兩個圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點睛】本題考查了幾何體的三視圖及表面積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解.4、D【解析】

求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【詳解】由題:,其中,令,,若函數(shù)在區(qū)間內有零點,則有解,解得:當當當結合四個選項可以分析,實數(shù)的取值可能是.故選:D【點睛】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質,求出函數(shù)零點再討論其所在區(qū)間列不等式求解.5、C【解析】

根據(jù)表格中的數(shù)據(jù),求得樣本中心為,代入回歸直線方程,即可求解.【詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【點睛】本題主要考查了回歸直線方程的應用,其中解答中熟記回歸直線方程的基本特征是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、C【解析】試題分析:因為,,成等比數(shù)列,所以可得,有最小值,故選C.考點:1、等比數(shù)列的性質;2、對數(shù)的運算及基本不等式求最值.7、D【解析】分析:分別求出事件“2名男同學和3名女同學中任選2人參加社區(qū)服務”的總可能及事件“選中的2人都是女同學”的總可能,代入概率公式可求得概率.詳解:設2名男同學為,3名女同學為,從以上5名同學中任選2人總共有共10種可能,選中的2人都是女同學的情況共有共三種可能則選中的2人都是女同學的概率為,故選D.點睛:應用古典概型求某事件的步驟:第一步,判斷本試驗的結果是否為等可能事件,設出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.8、A【解析】

先由a、b、c成等比數(shù)列,得到,再由題中條件,結合余弦定理,即可求出結果.【詳解】解:a、b、c成等比數(shù)列,所以,?所以,由余弦定理可知,又,所以.故選A.【點睛】本題主要考查解三角形,熟記余弦定理即可,屬于??碱}型.9、D【解析】

由已知分析,尋找數(shù)據(jù)的規(guī)律,找出第11個括號的所有數(shù)據(jù)即可.【詳解】因為每三個括號,總共有數(shù)據(jù)1+2+3=6個,相當于一個“周期”,故第11個括號,在第4個周期的第二個括號;則第11個括號中有兩個數(shù),其數(shù)值為首項為1,公差為2的等差數(shù)列數(shù)列中的第20項(6,第21項的和,即.故選:D.【點睛】本題考查數(shù)列新定義問題,涉及歸納總結,屬中檔題.10、C【解析】

利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進行數(shù)量積運算,得到關于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉化為數(shù)量關系的方法.12、【解析】

根據(jù)分段函數(shù)的解析式先求,再求即可.【詳解】因為,所以.【點睛】本題主要考查了分段函數(shù)求值問題,解題的關鍵是將自變量代入相應范圍的解析式中,屬于基礎題.13、【解析】

利用無窮等比數(shù)列的各項和,可求得,從而,利用首項是某個自然數(shù),可求,進而可求出.【詳解】無窮等比數(shù)列各項和為3,,是個自然數(shù),則,.故答案為:【點睛】本題主要考查了等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.14、【解析】因為,所以=.故填.15、【解析】

利用再結合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應用廣泛,屬于中檔題16、【解析】

先算出的坐標,然后利用即可求出【詳解】因為,所以因為,所以即,解得故答案為:【點睛】本題考查的是向量在坐標形式下的相關計算,較簡單.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)向量的數(shù)乘運算及加法運算即可得到本題答案;(2)根據(jù)向量的模的計算公式即可得到本題答案.【詳解】(1)因為,,所以;所以;(2)因為,所以.【點睛】本題主要考查平面向量的線性運算以及模的計算,屬基礎題.18、(1)散點圖見詳解;(2);(3)萬元.【解析】

(1)根據(jù)表格數(shù)據(jù),繪制散點圖即可;(2)根據(jù)參考數(shù)據(jù),結合表格數(shù)據(jù),分別求解回歸直線方程的系數(shù)即可;(3)令(2)中所求回歸直線中,即可求得預測值.【詳解】(1)根據(jù)表格中的5組數(shù)據(jù),繪制散點圖如下:(2)由表格數(shù)據(jù)可知:,故可得故所求回歸直線方程為.(3)由(2)知,令,解得.故廣告費支出為10萬元時,銷售額為萬元.【點睛】本題考查散點圖的繪制,線性回歸直線方程的求解,以及應用回歸直線方程進行預測,屬綜合性基礎題.19、,,【解析】試題分析:利用向量的加減法的幾何意義得,再結合已知及圖形得最后求出.試題解析:解:考點:向量的加減法的幾何意義20、(Ⅰ)(Ⅱ)①當為偶數(shù)時,,當為奇數(shù)時,;②【解析】

試題分析:(Ⅰ)由新定義知:前項之和為兩等差數(shù)列之和,一個是首項為3,公差為8的等差數(shù)列前8項和,另一個是首項為17,公差為8的等差數(shù)列前7項和,所以前項之和(Ⅱ)①根據(jù)新定義知:證明目標為,,相減得,當為奇數(shù)時,依次構成首項為a,公差為2的等差數(shù)列,,當為偶數(shù)時,依次構成首項為2-a,公差為2的等差數(shù)列,②先求和:當為偶數(shù)時,;當為奇數(shù)時,故當時,,,,由,則,解得.試題解析:(Ⅰ)易得數(shù)列前項之和(Ⅱ)①()(A)(B)(B)(A)得().所以,為公差為2的“隔項等差”數(shù)列.當為偶數(shù)時,,當為奇數(shù)時,;②當為偶數(shù)時,;當為奇數(shù)時,.故當時,,,,由,則,解得.所以存在實數(shù),使得成等比數(shù)列()考點:新定義,等差數(shù)列通項及求和21、(1)32;(2)【解析】

由兩向量坐標以及向量共線,結合正弦定理,化簡可得(1)由,,代入原式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論