山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省棗莊市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.地球上的陸地面積約為149000000千米2,用科學(xué)記數(shù)法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千22.隨著生活水平的提高,小林家購(gòu)置了私家車(chē),這樣他乘坐私家車(chē)上學(xué)比乘坐公交車(chē)上學(xué)所需的時(shí)間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車(chē)平均速度是乘公交車(chē)平均速度的2.5倍,若設(shè)乘公交車(chē)平均每小時(shí)走x千米,根據(jù)題意可列方程為()A. B. C. D.3.如圖,在平面直角坐標(biāo)系xOy中,△由△繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)4.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(﹣1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線(xiàn)段DA與y軸交于E點(diǎn),則△ABE面積的最小值是()A.2B.83C.2+25.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含6.菱形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,H為AD邊中點(diǎn),菱形ABCD的周長(zhǎng)為28,則OH的長(zhǎng)等于()A.3.5 B.4 C.7 D.147.觀(guān)察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀(guān)察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1398.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃9.已知,下列說(shuō)法中,不正確的是()A. B.與方向相同C. D.10.某班體育委員對(duì)本班學(xué)生一周鍛煉(單位:小時(shí))進(jìn)行了統(tǒng)計(jì),繪制了如圖所示的折線(xiàn)統(tǒng)計(jì)圖,則該班這些學(xué)生一周鍛煉時(shí)間的中位數(shù)是()A.10 B.11 C.12 D.13二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.如圖,將兩張長(zhǎng)為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,容易知道當(dāng)兩張紙條垂直時(shí),菱形的周長(zhǎng)有最小值8,那么菱形周長(zhǎng)的最大值是_________.12.如圖,已知AB∥CD,直線(xiàn)EF分別交AB、CD于點(diǎn)E、F,EG平分∠BEF,若∠1=50°,則∠2的度數(shù)為_(kāi)______.13.已知x1、x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,則1214.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.15.因式分解:a2b+2ab+b=.16.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AC與BD相交于點(diǎn)E,AC=BC,DE=3,AD=5,則⊙O的半徑為_(kāi)__________.17.雙曲線(xiàn)、在第一象限的圖像如圖,過(guò)y2上的任意一點(diǎn)A,作x軸的平行線(xiàn)交y1于B,交y軸于C,過(guò)A作x軸的垂線(xiàn)交y1于D,交x軸于E,連結(jié)BD、CE,則=.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖,已知ABCD是邊長(zhǎng)為3的正方形,點(diǎn)P在線(xiàn)段BC上,點(diǎn)G在線(xiàn)段AD上,PD=PG,DF⊥PG于點(diǎn)H,交AB于點(diǎn)F,將線(xiàn)段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.19.(5分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點(diǎn)D在邊AB上.(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線(xiàn)段AC的延長(zhǎng)線(xiàn)于點(diǎn)G,AG=5CG,BH=1.求CG的長(zhǎng).20.(8分)如圖,中,于,點(diǎn)分別是的中點(diǎn).(1)求證:四邊形是菱形(2)如果,求四邊形的面積21.(10分)如圖,在矩形ABCD中,對(duì)角線(xiàn)AC的垂直平分線(xiàn)EF分別交AD、AC、BC于點(diǎn)E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長(zhǎng).22.(10分)如圖1,在平行四邊形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線(xiàn)與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時(shí),在不添加其他輔助線(xiàn)的情況下,直接寫(xiě)出腰長(zhǎng)等于BD的所有的等腰三角形.23.(12分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線(xiàn)AE交BC于點(diǎn)E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說(shuō)明理由.24.(14分)為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆“漢字聽(tīng)寫(xiě)大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽(tīng)寫(xiě)100個(gè)漢字,每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)椋ǚ郑?,且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:組別

成績(jī)(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請(qǐng)根據(jù)表格提供的信息,解答以下問(wèn)題:本次決賽共有名學(xué)生參加;直接寫(xiě)出表中a=,b=;請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、C【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).解:149

000

000=1.49×2千米1.故選C.把一個(gè)數(shù)寫(xiě)成a×10n的形式,叫做科學(xué)記數(shù)法,其中1≤|a|<10,n為整數(shù).因此不能寫(xiě)成149×106而應(yīng)寫(xiě)成1.49×2.2、D【解析】分析:根據(jù)乘私家車(chē)平均速度是乘公交車(chē)平均速度的2.5倍,乘坐私家車(chē)上學(xué)比乘坐公交車(chē)上學(xué)所需的時(shí)間少用了15分鐘,利用時(shí)間得出等式方程即可.詳解:設(shè)乘公交車(chē)平均每小時(shí)走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實(shí)際問(wèn)題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個(gè)部分,列出方程即可.3、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)的交點(diǎn)即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對(duì)應(yīng)點(diǎn)的連線(xiàn)CC′、AA′的垂直平分線(xiàn)過(guò)點(diǎn)(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標(biāo)是P(1,-1)故選B.考點(diǎn):坐標(biāo)與圖形變化—旋轉(zhuǎn).4、C【解析】當(dāng)⊙C與AD相切時(shí),△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.5、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點(diǎn):圓與圓的位置關(guān)系.6、A【解析】

根據(jù)菱形的四條邊都相等求出AB,菱形的對(duì)角線(xiàn)互相平分可得OB=OD,然后判斷出OH是△ABD的中位線(xiàn),再根據(jù)三角形的中位線(xiàn)平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長(zhǎng)為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點(diǎn),∴OH是△ABD的中位線(xiàn),∴OHAB7=3.1.故選A.【點(diǎn)睛】本題考查了菱形的對(duì)角線(xiàn)互相平分的性質(zhì),三角形的中位線(xiàn)平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.7、B【解析】

由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點(diǎn)睛】本題考查了數(shù)字變化規(guī)律,觀(guān)察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.8、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個(gè)實(shí)際問(wèn)題可轉(zhuǎn)化為減法運(yùn)算,列算式計(jì)算即可.【詳解】3-(-4)=3+4=7℃.

故選B.9、A【解析】

根據(jù)平行向量以及模的定義的知識(shí)求解即可求得答案,注意掌握排除法在選擇題中的應(yīng)用.【詳解】A、,故該選項(xiàng)說(shuō)法錯(cuò)誤B、因?yàn)?,所以與的方向相同,故該選項(xiàng)說(shuō)法正確,C、因?yàn)椋?,故該選項(xiàng)說(shuō)法正確,D、因?yàn)?,所以;故該選項(xiàng)說(shuō)法正確,故選:A.【點(diǎn)睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線(xiàn)向量,是指方向相同或相反的非零向量.零向量和任何向量平行.10、B【解析】

根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得本班的學(xué)生數(shù),從而可以求得該班這些學(xué)生一周鍛煉時(shí)間的中位數(shù),本題得以解決.【詳解】由統(tǒng)計(jì)圖可得,本班學(xué)生有:6+9+10+8+7=40(人),該班這些學(xué)生一周鍛煉時(shí)間的中位數(shù)是:11,故選B.【點(diǎn)睛】本題考查折線(xiàn)統(tǒng)計(jì)圖、中位數(shù),解答本題的關(guān)鍵是明確題意,會(huì)求一組數(shù)據(jù)的中位數(shù).二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、1【解析】

畫(huà)出圖形,設(shè)菱形的邊長(zhǎng)為x,根據(jù)勾股定理求出周長(zhǎng)即可.【詳解】當(dāng)兩張紙條如圖所示放置時(shí),菱形周長(zhǎng)最大,設(shè)這時(shí)菱形的邊長(zhǎng)為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長(zhǎng)為1cm.

故答案是:1.【點(diǎn)睛】解答關(guān)鍵是怎樣放置紙條使得到的菱形的周長(zhǎng)最大,然后根據(jù)圖形列方程.12、65°【解析】因?yàn)锳B∥CD,所以∠BEF=180°-∠1=130°,因?yàn)镋G平分∠BEF,所以∠BEG=65°,因?yàn)锳B∥CD,所以∠2=∠BEG=65°.13、6【解析】

已知x1,x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,根據(jù)方程解的定義及根與系數(shù)的關(guān)系可得x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,代入所給的代數(shù)式,再利用完全平方公式變形,整體代入求值即可.【詳解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,∴x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,∴12x1故答案為6.【點(diǎn)睛】本題考查了一元二次方程解的定義及根與系數(shù)的關(guān)系,會(huì)熟練運(yùn)用整體思想是解決本題的關(guān)鍵.14、【解析】試題解析:所以故答案為15、b2【解析】該題考查因式分解的定義首先可以提取一個(gè)公共項(xiàng)b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b216、【解析】

如圖,作輔助線(xiàn)CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長(zhǎng),即可解決問(wèn)題.【詳解】如圖,連接CO并延長(zhǎng),交AB于點(diǎn)F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設(shè)⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點(diǎn)睛】該題主要考查了相似三角形的判定及其性質(zhì)、垂徑定理的推論等幾何知識(shí)點(diǎn)的應(yīng)用問(wèn)題;解題的關(guān)鍵是作輔助線(xiàn),構(gòu)造相似三角形,靈活運(yùn)用有關(guān)定來(lái)分析、判斷.17、【解析】

設(shè)A點(diǎn)的橫坐標(biāo)為a,把x=a代入得,則點(diǎn)A的坐標(biāo)為(a,).∵AC⊥y軸,AE⊥x軸,∴C點(diǎn)坐標(biāo)為(0,),B點(diǎn)的縱坐標(biāo)為,E點(diǎn)坐標(biāo)為(a,0),D點(diǎn)的橫坐標(biāo)為a.∵B點(diǎn)、D點(diǎn)在上,∴當(dāng)y=時(shí),x=;當(dāng)x=a,y=.∴B點(diǎn)坐標(biāo)為(,),D點(diǎn)坐標(biāo)為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.三、解答題(共7小題,滿(mǎn)分69分)18、(1)證明見(jiàn)解析;(2)1.【解析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個(gè)直角即可證明△ADF≌△MPG,從而得出對(duì)應(yīng)邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據(jù)旋轉(zhuǎn),得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據(jù)勾股定理和等量代換求出邊長(zhǎng)DF的值;根據(jù)相似三角形得出對(duì)應(yīng)邊成比例求出GH的值,從而求出高PH的值;最后根據(jù)面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線(xiàn)段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點(diǎn)睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質(zhì),本題的關(guān)鍵是求邊長(zhǎng)和高的值19、(1)證明見(jiàn)解析;(2)ED=EB,證明見(jiàn)解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點(diǎn)O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點(diǎn)O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點(diǎn)O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點(diǎn)O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.20、(1)證明見(jiàn)解析;(2).【解析】

(1)先根據(jù)直角三角形斜邊上中線(xiàn)的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),即可得到AE=AF=DE=DF,進(jìn)而判定四邊形AEDF是菱形;

(2)根據(jù)等邊三角形的性質(zhì)得出EF=5,AD=5,進(jìn)而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn),

∴Rt△ABD中,DE=AB=AE,

Rt△ACD中,DF=AC=AF,

又∵AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF是菱形;

(2)如圖,

∵AB=AC=BC=10,

∴EF=5,AD=5,

∴菱形AEDF的面積S=EF?AD=×5×5=.【點(diǎn)睛】本題考查菱形的判定與性質(zhì)的運(yùn)用,解題時(shí)注意:四條邊相等的四邊形是菱形;菱形的面積等于對(duì)角線(xiàn)長(zhǎng)乘積的一半.21、(1)見(jiàn)解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線(xiàn)段垂直平分線(xiàn)性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線(xiàn),∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線(xiàn),∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長(zhǎng)為1.【點(diǎn)睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線(xiàn)的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,用了方程思想.22、(1)證明見(jiàn)解析;(2)△DOF,△FOB,△EOB,△DOE.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論