浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第1頁
浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第2頁
浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第3頁
浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第4頁
浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省寧波市鎮(zhèn)海中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則向量在方向上的投影為()A. B. C. D.2.的弧度數(shù)是()A. B. C. D.3.直線l:3x+4y+5=0被圓M:(x–2)2+(y–1)2=16截得的弦長為()A. B.5 C. D.104.已知兩個正數(shù)a,b滿足,則的最小值是(

)A.2 B.3 C.4 D.55.已知函數(shù),則A.f(x)的最小正周期為π B.f(x)為偶函數(shù)C.f(x)的圖象關(guān)于對稱 D.為奇函數(shù)6.已知樣本數(shù)據(jù)為3,1,3,2,3,2,則這個樣本的中位數(shù)與眾數(shù)分別為()A.2,3 B.3,3 C.2.5,3 D.2.5,27.已知數(shù)列滿足,且是函數(shù)的兩個零點(diǎn),則等于()A.24 B.32 C.48 D.648.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.119.以拋物線C的頂點(diǎn)為圓心的圓交C于A、B兩點(diǎn),交C的準(zhǔn)線于D、E兩點(diǎn).已知|AB|=,|DE|=,則C的焦點(diǎn)到準(zhǔn)線的距離為()A.2 B.4 C.6 D.810.若為圓的弦的中點(diǎn),則直線的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的兩根分別為、、且,且__________.12.函數(shù)的最小正周期為______________.13.若,,,則M與N的大小關(guān)系為___________.14.設(shè)為數(shù)列的前項和,則__15.設(shè)三棱錐滿足,,則該三棱錐的體積的最大值為____________.16.如圖,兩個正方形,邊長為2,.將繞旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,與平面的距離最大值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點(diǎn).(1)求證:平面;(2)若為的中點(diǎn),求證:平面;(3)求三棱錐的體積.18.設(shè)Sn為數(shù)列{an}的前n項和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并證明:數(shù)列{an+1}為等比數(shù)列;(1)設(shè)bn=log1(a3n+1),數(shù)列{}的前n項和為Tn,求證:1≤18Tn<1.19.已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的最大項的值與最小項的值.20.已知函數(shù).(1)當(dāng)時,解不等式;(2)若不等式對恒成立,求m的取值范圍.21.某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對學(xué)生進(jìn)行視力檢查.(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)分析:①列出所有可能抽取的結(jié)果;②求抽取的2所學(xué)校至少有一所中學(xué)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)向量夾角公式求得夾角的余弦值;根據(jù)所求投影為求得結(jié)果.【詳解】由題意得:向量在方向上的投影為:本題正確選項:【點(diǎn)睛】本題考查向量在方向上的投影的求解問題,關(guān)鍵是能夠利用向量數(shù)量積求得向量夾角的余弦值.2、B【解析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點(diǎn)睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.3、C【解析】

求出圓心到直線l的距離,再利用弦長公式進(jìn)行求解即可.【詳解】∵圓(x–2)2+(y–1)2=16,∴圓心(2,1),半徑r=4,圓心到直線l:3x+4y+5=0的距離d==3,∴直線3x+4y+5=0被圓(x–2)2+(y–1)2=16截得的弦長l=2=2.故選C.【點(diǎn)睛】本題考查了直線被圓截得的弦長公式,主要用到了點(diǎn)到直線的距離公式.4、D【解析】

根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點(diǎn)睛】本題考查基本不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是掌握基本不等式應(yīng)用的條件.5、C【解析】對于函數(shù),它的最小正周期為=4π,故A選項錯誤;函數(shù)f(x)不滿足f(–x)=f(x),故f(x)不是偶函數(shù),故B選項錯誤;令x=,可得f(x)=sin0=0,故f(x)的圖象關(guān)于對稱,C正確;由于f(x–)=sin(x–)=–sin(x)=–cos(x)為偶函數(shù),故D選項錯誤,故選C.6、C【解析】

將樣本數(shù)據(jù)從小到大排列即可求得中位數(shù),再找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù).【詳解】將樣本數(shù)據(jù)從小到大排列:1,2,2,3,3,3,中位數(shù)為,眾數(shù)為3.故選:C.【點(diǎn)睛】本題考查了中位數(shù)和眾數(shù)的概念,屬于基礎(chǔ)題.7、D【解析】試題分析:依題意可知,,,,所以.即,故,,,.,所以,又可知.,故.考點(diǎn):函數(shù)的零點(diǎn)、數(shù)列的遞推公式8、A【解析】

由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.9、B【解析】

如圖,設(shè)拋物線方程為,交軸于點(diǎn),則,即點(diǎn)縱坐標(biāo)為,則點(diǎn)橫坐標(biāo)為,即,由勾股定理知,,即,解得,即的焦點(diǎn)到準(zhǔn)線的距離為4,故選B.【點(diǎn)睛】10、D【解析】

圓的圓心為O,求出圓心坐標(biāo),利用垂徑定理,可以得到,求出直線的斜率,利用兩直線垂直斜率關(guān)系可以求出直線的斜率,利用點(diǎn)斜式寫出直線方程,最后化為一般式方程.【詳解】設(shè)圓的圓心為O,坐標(biāo)為(1,0),根據(jù)圓的垂徑定理可知:,因為,所以,因此直線的方程為,故本題選D.【點(diǎn)睛】本題考查了圓的垂徑定理、兩直線垂直斜率的關(guān)系,考查了斜率公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由韋達(dá)定理和兩角和的正切公式可得,進(jìn)一步縮小角的范圍可得,進(jìn)而可求.【詳解】方程兩根、,,,,又,,,,,,,結(jié)合,,故答案為.【點(diǎn)睛】本題考查兩角和與差的正切函數(shù),涉及韋達(dá)定理,屬中檔題.12、【解析】

利用函數(shù)y=Atan(ωx+φ)的周期為,得出結(jié)論.【詳解】函數(shù)y=3tan(3x)的最小正周期是,故答案為:.【點(diǎn)睛】本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為.13、【解析】

根據(jù)自變量的取值范圍,利用作差法即可比較大小.【詳解】,,,所以當(dāng)時,所以,即,故答案為:.【點(diǎn)睛】本題考查了作差法比較整式的大小,屬于基礎(chǔ)題.14、【解析】

當(dāng)時,;當(dāng)時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應(yīng)選答案.點(diǎn)睛:本題運(yùn)用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運(yùn)用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.15、【解析】

取中點(diǎn),連,可證平面,,要使最大,只需求最大值,即可求解.【詳解】取中點(diǎn),連,所以,,,平面,平面,設(shè)中邊上的高為,,當(dāng)且僅當(dāng)時,取等號.故答案為:.【點(diǎn)睛】本題考查錐體的體積計算,考查線面垂直的判定,屬于中檔題.16、【解析】

繞旋轉(zhuǎn)一周得到的幾何體是圓錐,點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像,根據(jù)圖像判斷出圓的下頂點(diǎn)距離平面的距離最大,解三角形求得這個距離的最大值.【詳解】繞旋轉(zhuǎn)一周得到的幾何體是圓錐,故點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像如下圖所示,根據(jù)圖像作法可知,當(dāng)位于圓心的正下方點(diǎn)位置時,到平面的距離最大.在平面內(nèi),過作,交于.在中,,.所以①.其中,,所以①可化為.故答案為:【點(diǎn)睛】本小題主要考查旋轉(zhuǎn)體的概念,考查空間點(diǎn)到面的距離的最大值的求法,考查空間想象能力和運(yùn)算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】

(1)在平面找一條直線平行即可.(2)在平面內(nèi)找兩條相交直線垂直即可.(3)三棱錐即可【詳解】(1)連接,因為直棱柱,則為矩形,則為的中點(diǎn)連接,在中,為中位線,則平面(2)連接,底面底面底面①為正邊的中點(diǎn)②由①②及平面(3)因為取的中點(diǎn),連接,則平面,即為高,【點(diǎn)睛】本題主要考查了直線與平面平行,直線與平面垂直的證明,以及三棱錐的體積公式,證明直線與平面平行往往轉(zhuǎn)化成證明直線與直線平行.屬于中等題.18、(1)見解析;(1)見解析【解析】

(1)可令求得的值;再由數(shù)列的遞推式,作差可得,可得數(shù)列為首項為1,公比為1的等比數(shù)列;(1)由(1)求得,,再由數(shù)列的裂項相消求和,可得,再由不等式的性質(zhì)即可得證.【詳解】(1)當(dāng)時,,即,∴,當(dāng)時,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴數(shù)列是首項為,公比為1的等比數(shù)列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【點(diǎn)睛】本題主要考查了數(shù)列的遞推式的運(yùn)用,考查等比數(shù)列的定義和通項公式、求和公式的運(yùn)用,考查數(shù)列的裂項相消求和,化簡運(yùn)算能力,屬于中檔題.19、(1);(2)最大項的值為,最小項的值為【解析】試題分析:(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項公式和前項和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得值,進(jìn)而求通項.(2)首先根據(jù)(1)得到,進(jìn)而得到,但是等比數(shù)列的公比是負(fù)數(shù),所以分兩種情況:當(dāng)?shù)漠?dāng)n為奇數(shù)時,隨n的增大而減小,所以;當(dāng)n為偶數(shù)時,隨n的增大而增大,所以,然后可判斷最值.試題解析:(1)設(shè)的公比為q.由成等差數(shù)列,得.即,則.又不是遞減數(shù)列且,所以.故.(2)由(1)利用等比數(shù)列的前項和公式,可得得當(dāng)n為奇數(shù)時,隨n的增大而減小,所以,故.當(dāng)n為偶數(shù)時,隨n的增大而增大,所以,故.綜上,對于,總有,所以數(shù)列最大項的值為,最小值的值為.考點(diǎn):等差中項,等比通項公式;數(shù)列增減性的討論求最值.20、(1)見解析;(2)【解析】

(1)當(dāng)m>﹣2時,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,對m進(jìn)行討論,可得解集;(2)轉(zhuǎn)化為x∈[﹣1,1]恒成立,分離參數(shù),利用基本不等式求最值求解m的取值范圍.【詳解】(1)當(dāng)時,;即.可得:.∵①當(dāng)時,即.不等式的解集為②當(dāng)時,.∵,∴不等式的解集為③當(dāng)時,.∵,∴不等式的解集為綜上:,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.(2)由題對任意,不等式恒成立.即.∵時,恒成立.可得:.設(shè),.則.可得:∵,當(dāng)且僅當(dāng)是取等號.∴,當(dāng)且僅當(dāng)是取等號.故得m的取值范圍.【點(diǎn)睛】本題主要考查了一元二次不等式的解法和討論思想的應(yīng)用,同時考查了分析求解的能力和計算能力,恒成立問題的轉(zhuǎn)化,屬于中檔題.21、(1)3所、2所;(2)①共10種;②【解析】

(1)根據(jù)分層抽樣的方法,得到分層抽樣的比例,即可求解樣本中小學(xué)與中學(xué)抽取的學(xué)校數(shù)目;(2)①3所小學(xué)分別記為;2所中學(xué)分別記為,利用列舉法,即可求得抽取的2所學(xué)校的所有結(jié)果;②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論