版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
寧夏銀川市興慶區(qū)長慶高中2025屆高一數(shù)學第二學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則2.若圓上至少有三個不同的點到直線的距離為,則直線的斜率的取值范圍是()A. B.C. D.3.在中,為的三等分點,則()A. B. C. D.4.若,,則與的夾角為()A. B. C. D.5.已知兩條不重合的直線和,兩個不重合的平面和,下列四個說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號為()A.②④ B.③④ C.④ D.①③6.已知,其中,則()A. B. C. D.7.已知非零向量與的夾角為,且,則()A.1 B.2 C. D.8.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形9.已知,,則等于()A. B. C. D.10.執(zhí)行下面的程序框圖,則輸出的的值為()A.10 B.34 C.36 D.154二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,隔河可以看到對岸兩目標,但不能到達,現(xiàn)在岸邊取相距的兩點,測得(在同一平面內(nèi)),則兩目標間的距離為_________.12.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.13.在中,,,,點在線段上,若,則的面積是_____.14.若實數(shù)滿足,則取值范圍是____________。15.函數(shù)的最小正周期是______.16.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為坐標原點,,,若.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當時,若方程有根,求的取值范圍.18.我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.(1)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;(2)估計居民月均用水量的中位數(shù).19.已知數(shù)列是公差不為0的等差數(shù)列,成等比數(shù)列.(1)求;(2)設,數(shù)列的前n項和為,求20.已知數(shù)列滿足(,且),且,設,,數(shù)列滿足.(1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項公式;(2)求數(shù)列的前n項和;(3)對于任意,,恒成立,求實數(shù)m的取值范圍.21.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關系.【詳解】請在此輸入詳解!2、C【解析】
作出圖形,設圓心到直線的距離為,利用數(shù)形結(jié)合思想可知,并設直線的方程為,利用點到直線的距離公式可得出關于的不等式,解出即可.【詳解】如下圖所示:設直線的斜率為,則直線的方程可表示為,即,圓心為,半徑為,由于圓上至少有三個不同的點到直線的距離為,所以,即,即,整理得,解得,因此,直線的斜率的取值范圍是.故選:C.【點睛】本題考查直線與圓的綜合問題,解題的關鍵就是確定圓心到直線距離所滿足的不等式,并結(jié)合點到直線的距離公式來求解,考查數(shù)形結(jié)合思想的應用,屬于中等題.3、B【解析】試題分析:因為,所以,以點為坐標原點,分別為軸建立直角坐標系,設,又為的三等分點所以,,所以,故選B.考點:平面向量的數(shù)量積.【一題多解】若,則,即有,為邊的三等分點,則,故選B.4、A【解析】
根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關鍵是熟練掌握兩向量夾角公式,屬于基礎題.5、C【解析】
根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結(jié)論,逐項判斷出各項的真假,即可求出.【詳解】對①,若,,,則或和相交,所以①錯誤;對②,若,,則或,所以②錯誤;對③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯誤;對④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【點睛】本題主要考查有關線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結(jié)論的理解和應用,屬于基礎題.6、D【解析】
先根據(jù)同角三角函數(shù)關系求得,再根據(jù)二倍角正切公式得結(jié)果.【詳解】因為,且,所以,因為,所以,因此,從而,,選D.【點睛】本題考查同角三角函數(shù)關系以及二倍角正切公式,考查基本分析求解能力,屬基礎題.7、B【解析】
根據(jù)條件可求出,從而對兩邊平方即可得出,解出即可.【詳解】向量與的夾角為,且;;;;或0(舍去);.故選:.【點睛】本題主要考查了向量數(shù)量積的定義及數(shù)量積的運算公式,屬于中檔題.8、C【解析】
由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當且僅當時取等號,所以,是等邊三角形,故選C.【點睛】本題考查三角形形狀的判斷,考查基本不等式的應用,利用基本不等式要注意“一正、二定、三相等”條件的應用,考查推理能力,屬于中等題.9、D【解析】
通過化簡可得,再根據(jù),可得,利用同角三角函數(shù)可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.10、B【解析】試題分析:第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):結(jié)束循環(huán),輸出,選B.考點:循環(huán)結(jié)構(gòu)流程圖【名師點睛】算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在中,在中,分別由正弦定理求出,,在中,由余弦定理可得解.【詳解】由圖可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案為:【點睛】此題考查利用正余弦定理求解三角形,根據(jù)已知邊角關系建立等式求解,此題求AB的長度可在多個三角形中計算,恰當?shù)剡x擇可以減少計算量.12、【解析】
設點,由和列方程組解出、的值,可得出向量的坐標.【詳解】設點的坐標為,則,由,得,解得,因此,,故答案為.【點睛】本題考查向量的坐標運算,解題時要將一些條件轉(zhuǎn)化為與向量坐標相關的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.13、【解析】
過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.14、;【解析】
利用三角換元,設,;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設,,本題正確結(jié)果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.15、【解析】
由二倍角的余弦函數(shù)公式化簡解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【詳解】.由周期公式可得:.故答案為【點睛】本題主要考查了二倍角的余弦函數(shù)公式的應用,考查了三角函數(shù)的周期性及其求法,屬于基本知識的考查.16、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)減區(qū)間為;(2).【解析】試題分析:(1)根據(jù)向量點積的坐標運算得到,根據(jù)正弦函數(shù)的單調(diào)性得到單調(diào)遞減區(qū)間;(2)將式子變形為.有解,轉(zhuǎn)化為值域問題.解析:(Ⅰ)∵,,∴其單調(diào)遞減區(qū)間滿足,,所以的單調(diào)減區(qū)間為.(Ⅱ)∵當時,方程有根,∴.∵,∴,∴,∴,∴.點睛:這個題目考查了,向量點積運算,三角函數(shù)的化一公式,,正弦函數(shù)的單調(diào)性問題,三角函數(shù)的值域和圖像問題.第二問還要用到了方程的零點的問題.一般函數(shù)的零點和方程的根,圖象的交點是同一個問題,可以互相轉(zhuǎn)化.18、(1)3.6萬;(2)2.06.【解析】
(1)由頻率分布直方圖的性質(zhì),求得,利用頻率分布直方圖求得月均用水量不低于3噸的頻率為,進而得到樣本中月均用水量不低于3噸的戶數(shù);(2)根據(jù)頻率分布直方圖,利用中位數(shù)的定義,即可求解.【詳解】(1)由頻率分布直方圖的性質(zhì),可得,即,解得,又由頻率分布直方圖可得月均用水量不低于3噸的頻率為,即樣本中月均用水量不低于3噸的戶數(shù)為萬.(2)根據(jù)頻率分布直方圖,得:,則,所以中位數(shù)應在組內(nèi),即,所以中位數(shù)是.【點睛】本題主要考查了頻率分布直方圖的性質(zhì),以及頻率分布直方圖中位數(shù)的求解及應用,其中解答中熟記頻率分布直方圖的性質(zhì)和中位數(shù)的計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)(2)【解析】
(1)根據(jù)已知條件求出,再寫出等差數(shù)列的通項得解;(2)利用分組求和求.【詳解】解:(1)設數(shù)列的首項為,公差為,則.因為成等比數(shù)列,所以,化簡得又因為,所以,又因為,所以.所以.(2)根據(jù)(1)可知,【點睛】本題主要考查等差數(shù)列通項的求法,考查等差等比數(shù)列前n項和的計算和分組求和,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、(1)見解析(2)(3).【解析】
(1)將式子寫為:得證,再通過等比數(shù)列公式得到的通項公式.(2)根據(jù)(1)得到進而得到數(shù)列通項公式,再利用錯位相減法得到前n項和.(3)首先判斷數(shù)列的單調(diào)性計算其最大值,轉(zhuǎn)換為二次不等式恒成立,將代入不等式,計算得到答案.【詳解】(1)因為,所以,,所以是等比數(shù)列,其中首項是,公比為,所以,.(2),所以,由(1)知,,又,所以.所以,所以兩式相減得.所以.(3),所以當時,,當時,,即,所以當或時,取最大值是.只需,即對于任意恒成立,即所以.【點睛】本題考查了等比數(shù)列的證明,錯位相減法求前N項和,數(shù)列的單調(diào)性,數(shù)列的最大值,二次不等式恒成立問題,綜合性強,計算量大,意在考查學生解決問題的能力.21、(1)見證明;(2)見證明【解析】
(1)設與的交點為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年汽車尾氣排放檢測協(xié)議
- 團隊建設活動策劃模板
- 《初中化學基本概念與實踐指導》
- 初中生物實驗活動中土壤氮磷鉀含量檢測中溫度控制對結(jié)果影響研究課題報告教學研究課題報告
- 技術(shù)方案審核及修改指導手冊
- 網(wǎng)絡購物確保按時交貨承諾函3篇
- 零售業(yè)店鋪經(jīng)理店鋪運營與員工管理績效考核表
- 建筑結(jié)構(gòu)質(zhì)量承諾函4篇
- 全程可追溯倉儲管理協(xié)議
- 王歡鳳的搭配課件
- 職業(yè)畢業(yè)就業(yè)生涯規(guī)劃書
- 腹腔出血課件
- 驚恐障礙的認知行為干預與藥物協(xié)同
- 消化內(nèi)科2025年終工作總結(jié)及2026年工作計劃匯報
- 2025中遠海運集團招聘筆試歷年參考題庫附帶答案詳解
- 2025年國家統(tǒng)計局齊齊哈爾調(diào)查隊公開招聘公益性崗位5人筆試考試備考試題及答案解析
- 啦啦操課件教學課件
- 2025年及未來5年市場數(shù)據(jù)中國拋光液市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 2026年網(wǎng)絡安全法培訓課件
- 2025年全國新能源電力現(xiàn)貨交易價格趨勢報告
- 2025重慶市涪陵區(qū)人民政府江東街道辦事處選聘本土人才5人(公共基礎知識)測試題附答案解析
評論
0/150
提交評論