2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題含解析_第1頁
2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題含解析_第2頁
2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題含解析_第3頁
2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題含解析_第4頁
2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省黔東南州高一下數(shù)學期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當取得最小值時,x+2y-z的最大值為()A.0 B.C.2 D.2.若滿足條件的三角形ABC有兩個,那么a的取值范圍是()A. B. C. D.3.已知某圓柱的底面周長為12,高為2,矩形是該圓柱的軸截面,則在此圓柱側面上,從到的路徑中,最短路徑的長度為()A. B. C.3 D.24.已知為等比數(shù)列的前項和,,,則A. B. C. D.115.下列四個函數(shù)中,既是上的增函數(shù),又是以為周期的偶函數(shù)的是()A. B. C. D.6.在中,,是的內心,若,其中,動點的軌跡所覆蓋的面積為()A. B. C. D.7.已知是不共線的非零向量,,,,則四邊形是()A.梯形 B.平行四邊形 C.矩形 D.菱形8.已知為的三個內角的對邊,,的面積為2,則的最小值為().A. B. C. D.9.把正方形ABCD沿對角線AC折起,當以A,B,C,D四點為頂點的三棱錐體積最大時,二面角的大小為()A.30° B.45° C.60° D.90°10.計算:A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且為第三象限角,則的值等于______;12.已知實數(shù)滿足約束條件,若目標函數(shù)僅在點處取得最小值,則的取值范圍是__________.13.定義運算,如果,并且不等式對任意實數(shù)x恒成立,則實數(shù)m的范圍是______.14.已知數(shù)列的通項公式為,若數(shù)列為單調遞增數(shù)列,則實數(shù)的取值范圍是______.15.用數(shù)學歸納法證明不等式“(且)”的過程中,第一步:當時,不等式左邊應等于__________。16.設向量,定義一種向量積:.已知向量,點P在的圖象上運動,點Q在的圖象上運動,且滿足(其中O為坐標原點),則的單調增區(qū)間為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).18.如圖,在中,為邊上一點,,若.(1)若是銳角三角形,,求角的大小;(2)若銳角三角形,求的取值范圍.19.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值20.設數(shù)列的前n項和為,滿足,,.(1)若,求數(shù)列的通項公式;(2)若,求數(shù)列的通項公式;21.已知圓,直線(1)求證:直線過定點;(2)求直線被圓所截得的弦長最短時的值;(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.當且僅當x=2y時等號成立,則x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.當y=1時,x+2y-z有最大值2.故選C.2、C【解析】

利用正弦定理,用a表示出sinA,結合C的取值范圍,可知;根據(jù)存在兩個三角形的條件,即可求得a的取值范圍?!驹斀狻扛鶕?jù)正弦定理可知,代入可求得因為,所以若滿足有兩個三角形ABC則所以所以選C【點睛】本題考查了正弦定理在解三角形中的簡單應用,判斷三角形的個數(shù)情況,屬于基礎題。3、A【解析】

由圓柱的側面展開圖是矩形,利用勾股定理求解.【詳解】圓柱的側面展開圖如圖,圓柱的側面展開圖是矩形,且矩形的長為12,寬為2,則在此圓柱側面上從到的最短路徑為線段,.故選:A.【點睛】本題考查圓柱側面展開圖中的最短距離問題,是基礎題.4、C【解析】

由題意易得數(shù)列的公比代入求和公式計算可得.【詳解】設等比數(shù)列公比為q,,則,解得,,故選:C.【點睛】本題考查等比數(shù)列的求和公式和通項公式,求出數(shù)列的公比是解決問題的關鍵,屬基礎題.5、C【解析】

本題首先可確定四個選項中的函數(shù)的周期性以及在區(qū)間上的單調性、奇偶性,然后根據(jù)題意即可得出結果.【詳解】A項:函數(shù)周期為,在上是增函數(shù),奇函數(shù);B項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);C項:函數(shù)周期為,在上是增函數(shù),偶函數(shù);D項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);綜上所述,故選C.【點睛】本題考查三角函數(shù)的周期性以及單調性,能否熟練的掌握正弦函數(shù)以及余弦函數(shù)的圖像性質是解決本題的關鍵,考查推理能力,是簡單題.6、A【解析】

由且,易知動點的軌跡為以為鄰邊的平行四邊形的內部(含邊界),在中,由,利用余弦定理求得邊,再由和,求得內切圓的半徑,從而得到,再由動點的軌跡所覆蓋的面積得解.【詳解】因為且,根據(jù)向量加法的平行四邊形運算法則,所以動點的軌跡為以為鄰邊的平行四邊形的內部(含邊界),因為在中,,所以由余弦定理得:,所以,即,解得:,,所以.設的內切圓的半徑為,所以所以.所以.所以動點的軌跡所覆蓋的面積為:.故選:A【點睛】本題主要考查了動點軌跡所覆蓋的面積的求及正弦定理,余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.7、A【解析】

本題首先可以根據(jù)向量的運算得出,然后根據(jù)以及向量平行的相關性質即可得出四邊形的形狀.【詳解】因為,所以,因為,是不共線的非零向量,所以且,所以四邊形是梯形,故選A.【點睛】本題考查根據(jù)向量的相關性質來判斷四邊形的形狀,考查向量的運算以及向量平行的相關性質,如果一組對邊平行且不相等,那么四邊形是梯形;如果對邊平行且相等,那么四邊形是平行四邊形;相鄰兩邊長度相等的平行四邊形是菱形;相鄰兩邊垂直的平行四邊形是矩形,是簡單題.8、D【解析】

運用三角形面積公式和余弦定理,結合三角函數(shù)的輔助角公式和正弦型函數(shù)的值域最后可求出的最小值.【詳解】因為,所以,即,令,可得,于是有,因此,即,所以的最小值為,故本題選D.【點睛】本題考查了余弦定理、三角形面積公式,考查了輔助角公式,考查了數(shù)學運算能力.9、D【解析】

當平面ACD垂直于平面BCD時體積最大,得到答案.【詳解】取中點,連接當平面ACD垂直于平面BCD時等號成立.此時二面角為90°故答案選D【點睛】本題考查了三棱錐體積的最大值,確定高的值是解題的關鍵.10、A【解析】

根據(jù)正弦余弦的二倍角公式化簡求解.【詳解】,故選A.【點睛】本題考查三角函數(shù)的恒等變化,關鍵在于尋找題目與公式的聯(lián)系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)條件以及誘導公式計算出的值,再由的范圍計算出的值,最后根據(jù)商式關系:求得的值.【詳解】因為,所以,又因為且為第三象限角,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)中的給值求值問題,中間涉及到誘導公式以及同角三角函數(shù)的基本關系,難度一般.三角函數(shù)中的求值問題,一定要注意角的范圍,避免出現(xiàn)多解.12、【解析】

利用數(shù)形結合,討論的范圍,比較斜率大小,可得結果.【詳解】如圖,當時,,則在點處取最小值,符合當時,令,要在點處取最小值,則當時,要在點處取最小值,則綜上所述:故答案為:【點睛】本題考查目標函數(shù)中含參數(shù)的線性規(guī)劃問題,難點在于尋找斜率之間的關系,屬中檔題.13、【解析】

先由題意得到,根據(jù)題意求出的最大值,即可得出結果.【詳解】由題意得到,其中,因為,所以,又不等式對任意實數(shù)x恒成立,所以.故答案【點睛】本題主要考查由不等式恒成立求參數(shù)的問題,熟記三角函數(shù)的性質即可,屬于常考題型.14、【解析】

根據(jù)題意得到,推出,恒成立,求出的最大值,即可得出結果.【詳解】因為數(shù)列的通項公式為,且數(shù)列為單調遞增數(shù)列,所以,即,所以,恒成立,因此即可,又隨的增大而減小,所以,因此實數(shù)的取值范圍是.故答案為:【點睛】本題主要考查由數(shù)列的單調性求參數(shù),熟記遞增數(shù)列的特點即可,屬于常考題型.15、【解析】

用數(shù)學歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【詳解】用數(shù)學歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應是.即為答案.【點睛】本題考查數(shù)學歸納法的基本步驟,屬于簡單題.16、【解析】

設,,由求出的關系,用表示,并把代入即得,后利用余弦函數(shù)的單調性可得增區(qū)間.【詳解】設,,由得:,∴,,∵,∴,,即,令,得,∴增區(qū)間為.故答案為:.【點睛】本題考查新定義,正確理解新定義運算是解題關鍵.考查三角函數(shù)的單調性.利用新定義建立新老圖象間點的聯(lián)系,求出新函數(shù)的解析式,結合余弦函數(shù)性質求得增區(qū)間.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)10【解析】

解:(I)依題意得,即.當n≥2時,;當所以.(II)由(I)得,故=.因此,使得<成立的m必須滿足,故滿足要求的最小正整數(shù)m為10.18、(1);(2)【解析】

(1)利用正弦定理,可得,然后利用,可得結果.(2)【詳解】在中,,又,,所以,又是銳角三角形所以,所以又,則,所以故(2)由,所以,即由銳角三角形,所以所以,所以故,則所以【點睛】本題主要考查正弦定理邊角互換,重點掌握公式,難點在于對角度范圍求取,屬中檔題.19、(1)(2)當時,取最大值.【解析】

(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設,則,,則,,則.,當時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應用,重點考查了運算能力,屬中檔題20、(1);(2)【解析】

(1)根據(jù)遞推公式,得到,累加即可計算出的結果;(2)分類討論:為奇數(shù)、為偶數(shù),然后在求和時分奇偶項分別求和即可得到對應的的通項公式.【詳解】(1)因為,所以,所以上式疊加可得:,所以,又因為時符合的情況,所以;(2)因為,,所以,所以,又因為,所以,所以,因為,所以,當時,,當時,,當時,,當時,,所以.【點睛】本題考查數(shù)列的綜合應用,難度較難.(1)利用遞推公式求解數(shù)列通項公式時,對于的情況,一定要注意驗證是否滿足時的通項公式,此處決定數(shù)列通項公式是否需要分段書寫;(2)對于奇偶項分別成等差數(shù)列的數(shù)列,可以分奇偶討論數(shù)列的通項公式.21、(1)直線過定點(2).(3)在直線上存在定點,使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標.(Ⅱ)當AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉化求解即可.(Ⅲ)由題知,直線MC的方程為,假設存在定點N滿足題意,則設P(x,y),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論