寶雞市重點中學2024屆中考數學最后沖刺模擬試卷含解析_第1頁
寶雞市重點中學2024屆中考數學最后沖刺模擬試卷含解析_第2頁
寶雞市重點中學2024屆中考數學最后沖刺模擬試卷含解析_第3頁
寶雞市重點中學2024屆中考數學最后沖刺模擬試卷含解析_第4頁
寶雞市重點中學2024屆中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寶雞市重點中學2024屆中考數學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設x1,x2是方程x2-2x-1=0的兩個實數根,則的值是()A.-6 B.-5 C.-6或-5 D.6或52.方程的解是().A. B. C. D.3.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.4.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.85.賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設房價比定價180元增加x元,則有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=108906.﹣的相反數是()A.8 B.﹣8 C. D.﹣7.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<108.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.9.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個10.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.11.把a?的根號外的a移到根號內得()A. B.﹣ C.﹣ D.12.一個幾何體的俯視圖如圖所示,其中的數字表示該位置上小正方體的個數,那么這個幾何體的主視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一扇形紙扇完全打開后,外側兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結果保留π)14.一個圓的半徑為2,弦長是2,求這條弦所對的圓周角是_____.15.已知關于x的方程1-xx-216.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數y=的圖象上,則菱形的面積為_____.17.數據:2,5,4,2,2的中位數是_____,眾數是_____,方差是_____.18.如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)20.(6分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).21.(6分)隨著信息技術的快速發(fā)展,“互聯網+”滲透到我們日常生活的各個領域,網上在線學習交流已不再是夢,現有某教學網站策劃了A,B兩種上網學習的月收費方式:收費方式月使用費/元包時上網時間/h超時費/(元/min)A7250.01Bmn0.01設每月上網學習時間為x小時,方案A,B的收費金額分別為yA,yB.(1)如圖是yB與x之間函數關系的圖象,請根據圖象填空:m=;n=;(2)寫出yA與x之間的函數關系式;(3)選擇哪種方式上網學習合算,為什么.22.(8分)如圖,在中,,是邊上的高線,平分交于點,經過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.23.(8分)如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.24.(10分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.25.(10分)如圖,已知正比例函數y=2x和反比例函數的圖象交于點A(m,﹣2).求反比例函數的解析式;觀察圖象,直接寫出正比例函數值大于反比例函數值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結論.26.(12分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.27.(12分)近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.(1)求單車車座E到地面的高度;(結果精確到1cm)(2)根據經驗,當車座E到CB的距離調整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現將車座E調整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)(參考數據:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數根,∴x1+x2=2,x1?x2=-1∴=.故選A.2、B【解析】

直接解分式方程,注意要驗根.【詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經檢驗,x=是原方程的解.故選B.【點睛】本題考查了解分式方程,解分式方程不要忘記驗根.3、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.4、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.5、C【解析】

設房價比定價180元増加x元,根據利潤=房價的凈利潤×入住的房同數可得.【詳解】解:設房價比定價180元增加x元,根據題意,得(180+x﹣20)(50﹣)=1.故選:C.【點睛】此題考查一元二次方程的應用問題,主要在于找到等量關系求解.6、C【解析】互為相反數的兩個數是指只有符號不同的兩個數,所以的相反數是,故選C.7、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.8、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.9、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質;2、全等三角形的判定與性質;3、角平分線的性質;4、等腰三角形的判定與性質10、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.11、C【解析】

根據二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質得到,再把根號內化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是??碱}型.12、A【解析】

一一對應即可.【詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【點睛】理解立體幾何的概念是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、πcm1.【解析】

求出AD,先分別求出兩個扇形的面積,再求出答案即可.【詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【點睛】本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關鍵.14、60°或120°【解析】

首先根據題意畫出圖形,過點O作OD⊥AB于點D,通過垂徑定理,即可推出∠AOD的度數,求得∠AOB的度數,然后根據圓周角定理,即可推出∠AMB和∠ANB的度數.【詳解】解:如圖:連接OA,過點O作OD⊥AB于點D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【點睛】本題主要考查垂徑定理與圓周角定理,注意弦所對的圓周角有兩個,他們互為補角.15、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.16、1【解析】

連接AC交OB于D,由菱形的性質可知.根據反比例函數中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數的圖象上,

的面積,

菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質及反比例函數的比例系數k的幾何意義.解題關鍵是反比例函數圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.17、221.1.【解析】

先將這組數據從小到大排列,再找出最中間的數,即可得出中位數;找出這組數據中最多的數則是眾數;先求出這組數據的平均數,再根據方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進行計算即可.【詳解】解:把這組數據從小到大排列為:2,2,2,4,5,最中間的數是2,則中位數是2;眾數為2;∵這組數據的平均數是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點睛】本題考查了中位數、眾數與方差的定義,解題的關鍵是熟練的掌握中位數、眾數與方差的定義.18、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(39+9)米.【解析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.20、(1)1;(2).【解析】

(1)先計算乘方、絕對值、負整數指數冪和零指數冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數和分式的混合運算,解題的關鍵是掌握絕對值性質、負整數指數冪、零指數冪及分式混合運算順序和運算法則.21、(1)10,50;(2)見解析;(3)當0<x<30時,選擇A方式上網學習合算,當x=30時,選擇哪種方式上網學習都行,當x>30時,選擇B方式上網學習合算.【解析】

(1)由圖象知:m=10,n=50;(2)根據已知條件即可求得yA與x之間的函數關系式為:當x≤25時,yA=7;當x>25時,yA=7+(x﹣25)×0.01;(3)先求出yB與x之間函數關系為:當x≤50時,yB=10;當x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪種方式上網學習合算即可.【詳解】解:(1)由圖象知:m=10,n=50;故答案為:10;50;(2)yA與x之間的函數關系式為:當x≤25時,yA=7,當x>25時,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB與x之間函數關系為:當x≤50時,yB=10,當x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20,當0<x≤25時,yA=7,yB=50,∴yA<yB,∴選擇A方式上網學習合算,當25<x≤50時.yA=yB,即0.6x﹣8=10,解得;x=30,∴當25<x<30時,yA<yB,選擇A方式上網學習合算,當x=30時,yA=yB,選擇哪種方式上網學習都行,當30<x≤50,yA>yB,選擇B方式上網學習合算,當x>50時,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網學習合算,綜上所述:當0<x<30時,yA<yB,選擇A方式上網學習合算,當x=30時,yA=yB,選擇哪種方式上網學習都行,當x>30時,yA>yB,選擇B方式上網學習合算.【點睛】本題考查一次函數的應用.22、(1)見解析;(2)的半徑是.【解析】

(1)連結,易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結.∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數,相似三角形的判定與性質,等腰三角形的性質等知識,綜合程度較高,需要學生綜合運用知識的能力.23、(1)證明見試題解析;(2)1.【解析】

試題分析:(1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;(2)當四邊形BFCE是菱形時,BE=CE,根據菱形的性質即可得到結果.試題解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四邊形BFCE是平行四邊形;(2)當四邊形BFCE是菱形時,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴當BE=1時,四邊形BFCE是菱形,故答案為1.【考點】平行四邊形的判定;菱形的判定.24、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論