2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆江西省上饒市余干二中學數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1052.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根3.如圖,,點O在直線上,若,,則的度數(shù)為()A.65° B.55° C.45° D.35°4.如圖,AB是⊙O的弦,∠BAC=30°,BC=2,則⊙O的直徑等于()A.2 B.3 C.4 D.65.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切6.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個7.下列幾何圖形中,是中心對稱圖形但不是軸對稱圖形的是()A.圓 B.正方形 C.矩形 D.平行四邊形8.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.9.以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是()A. B. C. D.10.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.11.已知坐標平面上有一直線L,其方程式為y+2=0,且L與二次函數(shù)y=3x2+a的圖形相交于A,B兩點:與二次函數(shù)y=﹣2x2+b的圖形相交于C,D兩點,其中a、b為整數(shù).若AB=2,CD=1.則a+b之值為何?()A.1 B.9 C.16 D.2112.為測量某河的寬度,小軍在河對岸選定一個目標點A,再在他所在的這一側(cè)選點B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD與BC的交點E,如圖所示.若測得BE=90m,EC=45m,CD=60m,則這條河的寬AB等于()A.120m B.67.5m C.40m D.30m二、填空題(每題4分,共24分)13.若點,在反比例函數(shù)的圖象上,則______.(填“>”“<”或“=”)14.點P(3,﹣4)關于原點對稱的點的坐標是_____.15.正八邊形的每個外角的度數(shù)和是_____.16.在一個不透明的盒子里裝有除顏色外其余均相同的2個黃色兵乓球和若干個白色兵乓球,從盒子里隨機摸出一個兵乓球,摸到黃色兵乓球的概率為,那么盒子內(nèi)白色兵乓球的個數(shù)為________.17.將拋物線y=x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是__.18.如圖,將半徑為2,圓心角為90°的扇形BAC繞點A逆時針旋轉(zhuǎn)60°,點B、C的對應點分別為D、E,點D在上,則陰影部分的面積為_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,∠AOB=90°,AB∥x軸,OA=2,雙曲線經(jīng)過點A.將△AOB繞點A順時針旋轉(zhuǎn),使點O的對應點D落在x軸的負半軸上,若AB的對應線段AC恰好經(jīng)過點O.(1)求點A的坐標和雙曲線的解析式;(2)判斷點C是否在雙曲線上,并說明理由20.(8分)如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長CO交⊙O于點M,過點M作MN∥OB交CD于N.(1)求證:MN是⊙O的切線;(2)當OB=6cm,OC=8cm時,求⊙O的半徑及MN的長.21.(8分)解下列方程:(1)(y﹣1)2﹣4=1;(2)3x2﹣x﹣1=1.22.(10分)圖①、圖②均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段AB的端點均在格點上,按下列要求畫出圖形.(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.23.(10分).已知關于x的方程的兩根為滿足:,求實數(shù)k的值24.(10分)為了測量山坡上的電線桿的高度,數(shù)學興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結(jié)果保留整數(shù))25.(12分)如圖,為了估算河的寬度,在河對岸選定一個目標作為點A再在河的這邊選點B和C,使AB⊥BC,然后,再選點E,使EC⊥BC,用視線確定BC和AE的交點D.此時如果測得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.26.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,G是上一動點,AG,DC的延長線交于點F,連接AC,AD,GC,GD.(1)求證:∠FGC=∠AGD;(2)若AD=1.①當AC⊥DG,CG=2時,求sin∠ADG;②當四邊形ADCG面積最大時,求CF的長.

參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).2、C【解析】試題分析:利用根的判別式進行判斷.解:∵∴此方程無實數(shù)根.故選C.3、B【解析】先根據(jù),求出的度數(shù),再由即可得出答案.【詳解】解:∵,,∴.∵,∴.故選:B.【點睛】本題考查的是平行線的性質(zhì)、垂線的性質(zhì),熟練掌握垂線的性質(zhì)和平行線的性質(zhì)是解決問題的關鍵.4、C【分析】如圖,作直徑BD,連接CD,根據(jù)圓周角定理得到∠D=∠BAC=30°,∠BCD=90°,根據(jù)直角三角形的性質(zhì)解答.【詳解】如圖,作直徑BD,連接CD,∵∠BDC和∠BAC是所對的圓周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直徑,∠BCD是BD所對的圓周角,∴∠BCD=90°,∴BD=2BC=4,故選:C.【點睛】本題考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;半圓(或直徑)所對的圓周角是直角;90°圓周角所對的弦是直徑;熟練掌握圓周角定理是解題關鍵.5、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.6、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.【點睛】本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進行推理是解此題的關鍵.7、D【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義逐一判斷即可.【詳解】A.圓是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;B.正方形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;C.矩形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;D.平行四邊形是中心對稱圖形,不是軸對稱圖形,故本選項符合題意.故選D.【點睛】此題考查的是中心對稱圖形和軸對稱圖形的識別,掌握中心對稱圖形和軸對稱圖形的定義是解決此題的關鍵.8、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B9、D【解析】由于內(nèi)接正三角形、正方形、正六邊形是特殊內(nèi)角的多邊形,可構(gòu)造直角三角形分別求出邊心距的長,由勾股定理逆定理可得該三角形是直角三角形,進而可得其面積.【詳解】如圖1,∵OC=1,∴OD=1×sin30°=;如圖2,∵OB=1,∴OE=1×sin45°=;如圖3,∵OA=1,∴OD=1×cos30°=,則該三角形的三邊分別為:、、,∵()2+()2=()2,∴該三角形是以、為直角邊,為斜邊的直角三角形,∴該三角形的面積是,故選:D.【點睛】考查正多邊形的外接圓的問題,應用邊心距,半徑和半弦長構(gòu)成直角三角形,來求相關長度是解題關鍵。10、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.11、A【解析】分析:判斷出A、C兩點坐標,利用待定系數(shù)法求出a、b即可;詳解:如圖,由題意知:A(1,﹣2),C(2,﹣2),分別代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故選A.點睛:本題考查二次函數(shù)圖形上點的坐標特征,待定系數(shù)法等知識,解題的關鍵是理解題意,判斷出A、C兩點坐標是解決問題的關鍵.12、A【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE∽△DCE,∴.∵BE=90m,EC=45m,CD=60m,∴故選A.二、填空題(每題4分,共24分)13、<【分析】根據(jù)反比例的性質(zhì),比較大小【詳解】∵∴在每一象限內(nèi)y隨x的增大而增大點,在第二象限內(nèi)y隨x的增大而增大∴m<n故本題答案為:<【點睛】本題考查了通過反比例圖像的增減性判斷大小14、(﹣3,4).【分析】根據(jù)關于關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).填空即可.【詳解】解:點P(3,﹣4)關于原點對稱的點的坐標是(﹣3,4),故答案為(﹣3,4).【點睛】解決本題的關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).15、360°.【分析】根據(jù)題意利用正多邊形的外角和等于360度,進行分析計算即可得出答案.【詳解】解:因為任何一個多邊形的外角和都是360°,所以正八邊形的每個外角的度數(shù)和是360°.故答案為:360°.【點睛】本題主要考查多邊形的外角和定理,熟練掌握任何一個多邊形的外角和都是360°是解題的關鍵.16、1【分析】先求出盒子內(nèi)乒乓球的總個數(shù),然后用總個數(shù)減去黃色兵乓球個數(shù)得到白色乒乓球的個數(shù).【詳解】解:盒子內(nèi)乒乓球的總個數(shù)為2÷=6(個),白色兵乓球的個數(shù)6?2=1(個),故答案為:1.【點睛】此題主要考查了概率公式,關鍵是掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).17、y=(x+2)2-1【分析】根據(jù)左加右減,上加下減的變化規(guī)律運算即可.【詳解】解:按照“左加右減,上加下減”的規(guī)律,向左平移2個單位,將拋物線y=x2先變?yōu)閥=(x+2)2,再沿y軸方向向下平移1個單位拋物線y=(x+2)2即變?yōu)椋簓=(x+2)2?1,故答案為:y=(x+2)2?1.【點睛】本題考查了拋物線的平移,掌握平移規(guī)律是解題關鍵.18、【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】連接BD,過點B作BN⊥AD于點N,∵將半徑為2,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=1,BN=,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案為.【點睛】考查了扇形面積求法以及等邊三角形的判定與性質(zhì),正確得出△ABD是等邊三角形是解題關鍵.三、解答題(共78分)19、(1),雙曲線的解析式為;(2)點在雙曲線上,理由見解析.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì),得到,得到△AOD是等邊三角形,根據(jù)特殊角的三角函數(shù),求出點A的坐標,然后得到雙曲線的解析式;(2)先求出OC的長度,然后利用特殊角的三角函數(shù)求出點C的坐標,然后進行判斷即可.【詳解】解:(1)過點A作軸,垂足為.∵軸,.有旋轉(zhuǎn)的性質(zhì)可知,...為等邊三角形..,.點的坐標為.由題意知,,.雙曲線的解析式為:.(2)點在雙曲線上,理由如下:過點作軸,垂足為.由(1)知,...,.點的坐標為.將代入中,.點在雙曲線上.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),特殊角的三角函數(shù)等,求得△AOD是等邊三角形是解題的關鍵.20、(1)見解析;(2)4.8cm,MN=9.6cm.【分析】?(1)先由切線長定理和平行線的性質(zhì)可求出∠OBC+∠OCB=90°,進而可求∠BOC=90°,然后證明∠NMC=90°,即可證明MN是⊙O的切線;(2)連接OF,則OF⊥BC,根據(jù)勾股定理就可以求出BC的長,然后根據(jù)△BOC的面積就可以求出⊙O的半徑,通過證明△NMC∽△BOC,即可求出MN的長.【詳解】(1)證明:∵AB、BC、CD分別與⊙O切于點E、F、G,∴∠OBC=∠ABC,∠OCB=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°.∵MN∥OB,∴∠NMC=∠BOC=90°,即MN⊥MC且MO是⊙O的半徑,∴MN是⊙O的切線;(2)解:連接OF,則OF⊥BC,由(1)知,△BOC是直角三角形,∴BC===10,∵S△BOC=?OB?OC=?BC?OF,∴6×8=10×OF,∴OF=4.8cm,∴⊙O的半徑為4.8cm,由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°,∴△NMC∽△BOC,∴,即=,∴MN=9.6(cm).【點睛】本題主要考查的是切線的判定與性質(zhì),切線長定理,三角形內(nèi)角和定理,相似三角形的判定與性質(zhì),平行線的性質(zhì),勾股定理,三角形的面積等有關知識.熟練掌握各知識點是解答本題的關鍵.21、(1)y1=3,y2=﹣1;(2)x1=,x2=.【分析】(1)先移項,然后利用直接開方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【詳解】解:(1)(y﹣1)2﹣4=1,(y﹣1)2=4,y﹣1=±2,y=±2+1,y1=3,y2=﹣1;(2)3x2﹣x﹣1=1,a=3,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×3×(﹣1)=13>1,x=,x1=,x2=.【點睛】此題考查的是解一元二次方程,掌握利用直接開方法和公式法解一元二次方程是解決此題的關鍵.22、(1)如圖①點C即為所求作的點;見解析;(2)如圖②,點D即為所求作的點,見解析.【分析】(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.【詳解】解:(1)如圖①點C即為所求作的點;(2)如圖②,點D即為所求作的點.【點睛】本題考查了作圖——應用與設計作圖,解直角三角形.解決本題的關鍵是準確畫圖.23、或.【分析】根據(jù)根與系數(shù)的關系可得,,將其代入,可得,得出與k有關的方程,可解出k的值,最后驗證方程是否有實數(shù)根即可.【詳解】解:∵關于x的方程,∴,∴,,將其代入可得:,解得:,∵經(jīng)檢驗可得當或時方程均有兩個實數(shù)根,∴均滿足題意.故答案為:或.【點睛】本題考查根與系數(shù)關系的應用,當涉及到一元二次方程根的運算時,都可以考慮用根與系數(shù)的關系,在方程中含參數(shù)的題目中還應考慮,應用根與系數(shù)關系的前提是方程有兩個實數(shù)根,這個情況比較容易被忽略,要熟記.24、信號塔的高度約為100米.【分析】延長PQ交直線AB于點M,連接AQ,設PM的長為x米,先由三角函數(shù)得出方程求出PM,再由三角函數(shù)求出QM,得出PQ的長度即可.【詳解】解:延長交直線于點,連接,如圖所示:則,設的長為米,在中,,∴米,∴(米),在中,∵,∴,解得:,在中,∵,∴(米),∴(米);答:信號塔的高度約為100米.【點睛】本題考查解直角三角形的應用、三角函數(shù);由三角函數(shù)得出方程是解決問題的關鍵,注意掌握當兩個直角三角形有公共邊時,先求出這條公共邊的長是解答此類題的一般思路.25、100米【分析】由兩角對應相等可得△BAD∽△CED,利用對應邊成比例可得兩岸間的大致距離AB.【詳解】∵AB⊥BC,EC⊥BC∴∠B=∠C=90°又∵∠ADB=∠EDC∴△ABD∽△ECD∴即∴AB=100答:兩岸向的大致距高AB為100米.【點睛】本題考查相似三角形的應用;用到的知識點為:兩角對應相等的兩三角形相似;相似三角形的對應邊成比例.26、(1)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論