河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷含解析_第1頁
河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷含解析_第2頁
河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷含解析_第3頁
河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷含解析_第4頁
河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北承德市隆化縣重點達標名校2024年中考押題數(shù)學預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.32.據(jù)《關于“十三五”期間全面深入推進教育信息化工作的指導意見》顯示,全國6000萬名師生已通過“網(wǎng)絡學習空間”探索網(wǎng)絡條件下的新型教學、學習與教研模式,教育公共服務平臺基本覆蓋全國學生、教職工等信息基礎數(shù)據(jù)庫,實施全國中小學教師信息技術應用能力提升工程.則數(shù)字6000萬用科學記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1083.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.4.在中,,,下列結論中,正確的是()A. B.C. D.5.下列運算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a6.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.7.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣28.若實數(shù)a,b滿足|a|>|b|,則與實數(shù)a,b對應的點在數(shù)軸上的位置可以是()A. B. C. D.9.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.1610.一個布袋內只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.12.當a<0,b>0時.化簡:=_____.13.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.14.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.15.某校組織“優(yōu)質課大賽”活動,經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎,學校將從這四名教師中隨機挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.16.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍為__________.17.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.三、解答題(共7小題,滿分69分)18.(10分)如圖1,將長為10的線段OA繞點O旋轉90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應點B′恰好落在OA的延長線上,求陰影部分面積.19.(5分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?20.(8分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.21.(10分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.

解:因為直線可變形為,其中,所以點到直線的距離為:.根據(jù)以上材料,求:點到直線的距離,并說明點P與直線的位置關系;已知直線與平行,求這兩條直線的距離.22.(10分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.23.(12分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.24.(14分)如圖,已知,.求證.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.

根據(jù)數(shù)軸可以得到點A表示的數(shù)是.

故選:B.【點睛】此題考查了數(shù)軸有關內容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結合的優(yōu)點確定數(shù)軸的原點是解決本題的關鍵.2、C【解析】

將一個數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點睛】此題考查科學記數(shù)法,當所表示的數(shù)的絕對值大于1時,n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當要表示的數(shù)的絕對值小于1時,n為負整數(shù),其值等于原數(shù)中第一個非零數(shù)字前面所有零的個數(shù)的相反數(shù),正確掌握科學記數(shù)法中n的值的確定是解題的關鍵.3、C【解析】

設I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據(jù)題意列出方程是解題的關鍵.4、C【解析】

直接利用銳角三角函數(shù)關系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【點睛】此題主要考查了銳角三角函數(shù)關系,熟練掌握銳角三角函數(shù)關系是解題關鍵.5、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關鍵是掌握計算法則.6、D【解析】

將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數(shù)圖像上點的坐標特征,一次函數(shù)的圖像與性質,得出與的正負是解答本題的關鍵.7、D【解析】

根據(jù)二次函數(shù)頂點式的性質解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質,對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質是解題關鍵.8、D【解析】

根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數(shù)與數(shù)軸,熟練運用絕對值的意義是解題關鍵.9、D【解析】

由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數(shù)形結合思想與轉化思想的應用.10、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結果有9種,兩次摸出的球都是黑球的結果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.二、填空題(共7小題,每小題3分,滿分21分)11、7【解析】

首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.【詳解】根據(jù)俯視圖可得出第一層由5個小正方體組成;再結合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點睛】本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關鍵.12、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.13、①②③【解析】

根據(jù)翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.14、1【解析】

首先根據(jù)題意列表,由列表求得所有等可能的結果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點睛】考查概率的計算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關鍵.15、【解析】

根據(jù)列表法求出所有可能及可得出挑選的兩位教師恰好是一男一女的結果數(shù)而利用概率公式計算可得.【詳解】解:所有可能的結果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知總共有12種結果,每種結果出現(xiàn)的可能性相同.挑選的兩位教師恰好是一男一女的結果有8種,所以其概率為挑選的兩位教師恰好是一男一女的概率為=,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、.【解析】

根據(jù)判別式的意義得到,然后解不等式即可.【詳解】解:關于的一元二次方程有兩個不相等的實數(shù)根,,解得:,故答案為:.【點睛】此題考查了一元二次方程的根的判別式:當,方程有兩個不相等的實數(shù)根;當,方程有兩個相等的實數(shù)根;當,方程沒有實數(shù)根.17、1或.【解析】

當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.

②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點B落在點B′處,

∴∠AB′E=∠B=90°,

當△CEB′為直角三角形時,只能得到∠EB′C=90°,

∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當點B′落在AD邊上時,如答圖2所示.

此時ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.三、解答題(共7小題,滿分69分)18、(1);(2);(3)【解析】

(1)先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴l(xiāng)BQ;(3)由折疊的性質可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質,弧長公式,扇形的面積公式,熟記公式是解本題的關鍵.19、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質和判定、菱形的判定和性質、二次函數(shù)的性質等知識,解題的關鍵是學會構建二次函數(shù)解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據(jù)可以求得的值,根據(jù)長方形的性質,可以求得點的坐標;

(2)根據(jù)題意點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;

(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發(fā),以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.21、(1)點P在直線上,說明見解析;(2).【解析】

解:(1)求:(1)直線可變?yōu)?,說明點P在直線上;(2)在直線上取一點(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.22、(1)詳見解析;(2).【解析】

(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質得∠ODE=∠DEA=90°,可得DE為⊙O的切線;

(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論