版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省洪湖市瞿家灣中學2023-2024學年中考數(shù)學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.提出“金山銀山,不如綠水青山”,國家環(huán)保部大力治理環(huán)境污染,空氣質(zhì)量明顯好轉(zhuǎn),將惠及13.75億中國人,這個數(shù)字用科學記數(shù)法表示為()A.13.75×106B.13.75×105C.1.375×108D.1.375×1092.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個實數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-13.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4C. D.(a2b)3=a5b34.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位5.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側(cè)作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.6.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π7.2018年我市財政計劃安排社會保障和公共衛(wèi)生等支出約1800000000元支持民生幸福工程,數(shù)1800000000用科學記數(shù)法表示為()A.18×108B.1.8×108C.1.8×109D.0.18×10108.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°9.若關(guān)于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或310.如圖是棋盤的一部分,建立適當?shù)钠矫嬷苯亲鴺讼?,已知棋子“車”的坐標為?2,1),棋子“馬”的坐標為(3,-1),則棋子“炮”的坐標為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A在反比例函數(shù)y=(x>0)的圖像上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=2AD,過點A作AB⊥x軸于點B,連結(jié)BC交y軸于點E,若△ABC的面積為6,則k的值為________.12.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側(cè)面積為______cm213.有一枚材質(zhì)均勻的正方體骰子,它的六個面上分別有1點、2點、…、6點的標記,擲一次骰子,向上的一面出現(xiàn)的點數(shù)是素數(shù)的概率是_____.14.計算:(π﹣3)0﹣2-1=_____.15.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(shù)(x<0)的圖象上,則k=.16.的相反數(shù)是______,的倒數(shù)是______.三、解答題(共8題,共72分)17.(8分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.18.(8分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.19.(8分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?21.(8分)某超市預(yù)測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?22.(10分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.23.(12分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.24.如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)連結(jié)OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】13.75億=1.375×109.故答案選D.【點睛】本題考查的知識點是科學記數(shù)法,解題的關(guān)鍵是熟練的掌握科學記數(shù)法.2、A【解析】
根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.3、B【解析】
由整數(shù)指數(shù)冪和分式的運算的法則計算可得答案.【詳解】A項,根據(jù)單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項正確;C項,根據(jù)分式的加法法則可得:,故C項錯誤;D項,根據(jù)“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負整數(shù)次冪:(a≠0,p是正整數(shù)).4、C【解析】
根據(jù)“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應(yīng)的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關(guān)鍵.5、A【解析】
根據(jù)等邊三角形的性質(zhì)得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內(nèi)角和得到∠AFG=90°,根據(jù)相似三角形的性質(zhì)得到==,==,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點睛】本題考查了等邊三角形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積的計算,熟練掌握相似三角形的性質(zhì)和判定是解題的關(guān)鍵.6、B【解析】
先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應(yīng)用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關(guān)鍵.7、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1800000000=1.8×109,故選:C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.8、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點睛】本題考查旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵9、B【解析】
直接把x=1代入已知方程即可得到關(guān)于m的方程,解方程即可求出m的值.【詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數(shù)為0,∴m=3.故答案選B.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵是熟練的掌握一元二次方程的運算.10、B【解析】
直接利用已知點坐標建立平面直角坐標系進而得出答案.【詳解】解:根據(jù)棋子“車”的坐標為(-2,1),建立如下平面直角坐標系:∴棋子“炮”的坐標為(2,1),故答案為:B.【點睛】本題考查了坐標確定位置,正確建立平面直角坐標系是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
連結(jié)BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義得到k的值.【詳解】連結(jié)BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.12、60π【解析】
圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.解:圓錐的側(cè)面積=π×6×10=60πcm1.13、【解析】
先判斷擲一次骰子,向上的一面的點數(shù)為素數(shù)的情況,再利用概率公式求解即可.【詳解】解:∵擲一次這枚骰子,向上的一面的點數(shù)為素數(shù)的有2,3,5共3種情況,∴擲一次這枚骰子,向上的一面的點數(shù)為素數(shù)的概率是:.故答案為:.【點睛】本題考查了求簡單事件的概率,根據(jù)題意判斷出素數(shù)的個數(shù)是解題的關(guān)鍵.14、12【解析】
分別利用零指數(shù)冪a0=1(a≠0),負指數(shù)冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點睛】本題考查了零指數(shù)冪和負整數(shù)指數(shù)冪的運算,掌握運算法則是解題關(guān)鍵.15、-4.【解析】
過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據(jù)銳角三角函數(shù)的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數(shù)的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特點、等邊三角形的性質(zhì)、解直角三角函數(shù)等知識,難度適中.16、2,【解析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點:倒數(shù);相反數(shù).三、解答題(共8題,共72分)17、(1)b2(2)1【解析】分析:(1)、根據(jù)完全平方公式以及多項式的乘法計算法則將括號去掉,然后進行合并同類項即可得出答案;(2)、收下進行去分母,將其轉(zhuǎn)化為整式方程,從而得出方程的解,最后需要進行驗根.詳解:(1)解:原式=a2-2ab+b2-a2+2ab=b2;(2)解:,解得:x=1,經(jīng)檢驗x=1為原方程的根,所以原方程的解為x=1.點睛:本題主要考查的是多項式的乘法以及解分式方程,屬于基礎(chǔ)題型.理解計算法則是解題的關(guān)鍵.分式方程最后必須要進行驗根.18、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;
(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;
(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)如圖2,
過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,
∴四邊形ABCM是平行四邊形,
∵∠ABC=90°,
∴?ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵點D是BC中點,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵點D是BC中點,
∴BD=BC=2,
過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,
∴四邊形ABCN是平行四邊形,
∵∠ABC=90°,∴?ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.19、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.【解析】
詳解:(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因為a是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B型公交車4輛;②購買A型公交車7輛,B型公交車3輛;③購買A型公交車8輛,B型公交車2輛.(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.21、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】
(1)設(shè)第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據(jù)數(shù)量=總價÷單價結(jié)合第二批購進飲料的數(shù)量是第一批的3倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)由數(shù)量=總價÷單價可得出第一、二批購進飲料的數(shù)量,設(shè)銷售單價為y元/瓶,根據(jù)利潤=銷售單價×銷售數(shù)量﹣進貨總價結(jié)合獲利不少于2100元,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.【詳解】(1)設(shè)第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經(jīng)檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設(shè)銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.22、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設(shè)設(shè)E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 急救設(shè)備操作與維護護理
- 中職護理護理技術(shù)操作規(guī)范
- 人工智能助力護理質(zhì)量提升
- 崇義中學高二下學期第二次月考物理試題
- 2025年并購重組承銷補充協(xié)議
- 2025年搬家服務(wù)合同協(xié)議
- 2025年AI煤礦安全監(jiān)測系統(tǒng)中傳感器漂移實時校正
- 破陣子·為陳同甫賦壯詞以寄之 課件 2025-2026學年語文九年級下冊統(tǒng)編版
- 疫情防控宣傳試題及答案
- 2026 年中職酒店管理(酒店基礎(chǔ))試題及答案
- 紡織業(yè)賬務(wù)知識培訓課件
- 1688采購合同范本
- 購買鐵精粉居間合同范本
- GB/T 29730-2025冷熱水用分集水器
- 污水廠安全知識培訓
- (2025年標準)存單轉(zhuǎn)讓協(xié)議書
- 醫(yī)學科研誠信專項培訓
- 電力通信培訓課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導原則
- 軟骨肉瘤護理查房
評論
0/150
提交評論