版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東東營市2024年中考猜題數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知⊙O的半徑為5,若OP=6,則點(diǎn)P與⊙O的位置關(guān)系是()A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P在⊙O外 C.點(diǎn)P在⊙O上 D.無法判斷2.直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)3.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.4.計(jì)算-3-1的結(jié)果是()A.2B.-2C.4D.-45.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠26.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<07.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時(shí);②慢車比快車早出發(fā)2小時(shí);③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時(shí)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點(diǎn),C(x1,m)和D(x2,n)也是拋物線上的點(diǎn),且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n9.如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)D在AC的延長線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB10.化簡÷的結(jié)果是()A. B. C. D.2(x+1)11.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a(chǎn)= B.a(chǎn)=2b C.a(chǎn)=b D.a(chǎn)=3b12.用五個(gè)完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,矩形ABCD面積為40,點(diǎn)P在邊CD上,PE⊥AC,PF⊥BD,足分別為E,F(xiàn).若AC=10,則PE+PF=_____.14.計(jì)算:______.15.如圖,在⊙O中,點(diǎn)B為半徑OA上一點(diǎn),且OA=13,AB=1,若CD是一條過點(diǎn)B的動(dòng)弦,則弦CD的最小值為_____.16.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.17.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個(gè)圖案中有__________白色紙片,第n個(gè)圖案中有__________張白色紙片.18.計(jì)算:的值是______________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計(jì)算出a、b、c的值;結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.20.(6分)如圖1,正方形ABCD的邊長為8,動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在線段DC上運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā),以相同的速度沿射線AB方向運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到終點(diǎn)C時(shí),點(diǎn)F也停止運(yùn)動(dòng),連接AE交對角線BD于點(diǎn)N,連接EF交BC于點(diǎn)M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點(diǎn)E、F運(yùn)動(dòng)過程中,判斷EF與BD的位置關(guān)系,并說明理由;(2)在點(diǎn)E、F運(yùn)動(dòng)過程中,①判斷AE與AM的數(shù)量關(guān)系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點(diǎn)E、F運(yùn)動(dòng)過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.21.(6分)先化簡,再求值:,其中a為不等式組的整數(shù)解.22.(8分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達(dá)式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點(diǎn)坐標(biāo);已知二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1).①求a的值;②點(diǎn)B在二次函數(shù)C1的圖象上,點(diǎn)A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),求k的取值范圍.23.(8分)已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.24.(10分)如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長線交直線l于點(diǎn)C.(1)求證:AB=AC;(2)若,求⊙O的半徑.25.(10分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點(diǎn),且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.26.(12分)已知,如圖,在四邊形ABCD中,∠ADB=∠ACB,延長AD、BC相交于點(diǎn)E.求證:△ACE∽△BDE;BE?DC=AB?DE.27.(12分)小馬虎做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數(shù)“”;在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為.請你替小馬虎求出“”的正確答案.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
比較OP與半徑的大小即可判斷.【詳解】,,,點(diǎn)P在外,故選B.【點(diǎn)睛】本題考查點(diǎn)與圓的位置關(guān)系,記?。狐c(diǎn)與圓的位置關(guān)系有3種設(shè)的半徑為r,點(diǎn)P到圓心的距離,則有:點(diǎn)P在圓外;點(diǎn)P在圓上;點(diǎn)P在圓內(nèi).2、C【解析】
作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點(diǎn)坐標(biāo)為A(﹣6,0)和點(diǎn)B(0,4),因點(diǎn)C、D分別為線段AB、OB的中點(diǎn),可得點(diǎn)C(﹣3,1),點(diǎn)D(0,1).再由點(diǎn)D′和點(diǎn)D關(guān)于x軸對稱,可知點(diǎn)D′的坐標(biāo)為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點(diǎn)C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點(diǎn)P的坐標(biāo)為(﹣,0).故答案選C.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;軸對稱-最短路線問題.3、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.4、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.5、D【解析】
根據(jù)分式的分母不等于0即可解題.【詳解】解:∵代數(shù)式有意義,∴x-2≠0,即x≠2,故選D.【點(diǎn)睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關(guān)鍵.6、B【解析】
根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點(diǎn)確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點(diǎn)確定b2-4ac,根據(jù)x=1時(shí),y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯(cuò)誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2-4ac>0,C錯(cuò)誤;當(dāng)x=1時(shí),y>0,∴a+b+c>0,D錯(cuò)誤;故選B.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.7、B【解析】
根據(jù)圖形給出的信息求出兩車的出發(fā)時(shí)間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時(shí)快車行駛了4個(gè)小時(shí),故錯(cuò)誤.②慢車0時(shí)出發(fā),快車2時(shí)出發(fā),故正確.③快車4個(gè)小時(shí)走了276km,可求出速度為69km/h,錯(cuò)誤.④慢車6個(gè)小時(shí)走了276km,可求出速度為46km/h,正確.⑤慢車走了18個(gè)小時(shí),速度為46km/h,可得A,B距離為828km,正確.⑥快車2時(shí)出發(fā),14時(shí)到達(dá),用了12小時(shí),錯(cuò)誤.故答案選B.【點(diǎn)睛】本題考查了看圖手機(jī)信息的能力,注意快車并非0時(shí)刻出發(fā)是解題關(guān)鍵.8、C【解析】分析:將一般式配方成頂點(diǎn)式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點(diǎn),得出求得距離對稱軸越遠(yuǎn),函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關(guān)系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點(diǎn),∴當(dāng)時(shí),得∵∴∴故選C.點(diǎn)睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠(yuǎn)的點(diǎn),對應(yīng)的函數(shù)值越大,9、D【解析】
解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.10、A【解析】
原式利用除法法則變形,約分即可得到結(jié)果.【詳解】原式=?(x﹣1)=.故選A.【點(diǎn)睛】本題考查了分式的乘除法,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.11、B【解析】
從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個(gè)直角邊為(a+b)和b的直角三角形的面積,再與左右兩個(gè)直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點(diǎn)睛】本題主要考查了求陰影部分面積和因式分解,關(guān)鍵是正確列出陰影部分與空白部分的面積和正確進(jìn)行因式分解.12、A【解析】從正面看第一層是三個(gè)小正方形,第二層左邊一個(gè)小正方形,故選:A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4【解析】
由矩形的性質(zhì)可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【詳解】解:如圖,設(shè)AC與BD的交點(diǎn)為O,連接PO,
∵四邊形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案為4【點(diǎn)睛】本題考查了矩形的性質(zhì),利用三角形的面積關(guān)系解決問題是本題的關(guān)鍵.14、【解析】原式==.故答案為:.15、10【解析】
連接OC,當(dāng)CD⊥OA時(shí)CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【詳解】連接OC,當(dāng)CD⊥OA時(shí)CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【點(diǎn)睛】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧
.16、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,17、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎(chǔ)上,依次多3個(gè);根據(jù)其中的規(guī)律得出第n個(gè)圖案中有白色紙片即可.詳解:∵第1個(gè)圖案中有白色紙片3×1+1=4張第2個(gè)圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個(gè)圖案中有白色紙片3×4+1=13張第n個(gè)圖案中有白色紙片3n+1張,故答案為:13、3n+1.點(diǎn)睛:考查學(xué)生的探究能力,解題時(shí)必須仔細(xì)觀察規(guī)律,通過歸納得出結(jié)論.18、-1【解析】解:=-1.故答案為:-1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊(duì)選手成績比較穩(wěn)定.【解析】
分析:(1)根據(jù)成績表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計(jì)算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個(gè)代表隊(duì)選手的成績較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊(duì)選手成績比較穩(wěn)定.【點(diǎn)睛】本題是一道有關(guān)條形統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計(jì)類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計(jì)算方法是解題的關(guān)鍵.20、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】
(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進(jìn)而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時(shí),△AEM是等邊三角形;(3)設(shè)DE=x,過點(diǎn)N作NP⊥AB,反向延長PN交CD于點(diǎn)Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在線段DC上運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā),以相同的速度沿射線AB方向運(yùn)動(dòng),∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當(dāng)DE=16﹣8時(shí),△AEM是等邊三角形;(3)△ANF的面積不變.設(shè)DE=x,過點(diǎn)N作NP⊥AB,反向延長PN交CD于點(diǎn)Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形以及相似三角形的判定與性質(zhì)的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造相似三角形,利用全等三角形的對應(yīng)邊相等,相似三角形的對應(yīng)邊成比例得出結(jié)論.21、,1【解析】
先算減法,把除法變成乘法,求出結(jié)果,求出不等式組的整數(shù)解,代入求出即可.【詳解】解:原式=[﹣]==,∵不等式組的解為<a<5,其整數(shù)解是2,3,4,a不能等于0,2,4,∴a=3,當(dāng)a=3時(shí),原式==1.【點(diǎn)睛】本題考查了解一元一次不等式組、不等式組的整數(shù)解和分式的混合運(yùn)算和求值,能正確根據(jù)分式的運(yùn)算法則進(jìn)行化簡是解此題的關(guān)鍵.22、(1)y1=a(x+1)2﹣1,頂點(diǎn)為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】
(1)化成頂點(diǎn)式即可求得;(2)①把點(diǎn)A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標(biāo),然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點(diǎn)為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時(shí),二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時(shí),1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時(shí),1=k+k,解得k=,∴≤k≤,當(dāng)k<0時(shí),∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),k的取值范圍是≤k≤或k=﹣1.【點(diǎn)睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.23、(1)m≥﹣;(2)m=2.【解析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關(guān)于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因?yàn)閤1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時(shí),.靈活應(yīng)用整體代入的方法計(jì)算.24、(1)證明見解析;(2)1.【解析】
(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設(shè)⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點(diǎn)B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設(shè)⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點(diǎn)睛】本題考查了圓的切線的性質(zhì),圓的切線垂直于經(jīng)過切點(diǎn)的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系;簡記作:見切點(diǎn),連半徑,見垂直.25、(1)證明見解析;(2)CD的長為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 委托竟拍合同(標(biāo)準(zhǔn)版)
- 2026年建筑后期維護(hù)合同
- 2025年綠色生態(tài)養(yǎng)殖項(xiàng)目可行性研究報(bào)告
- 2025年AI智能客服系統(tǒng)優(yōu)化項(xiàng)目可行性研究報(bào)告
- 2025年城市公園及綠化工程項(xiàng)目可行性研究報(bào)告
- 2025年垃圾焚燒發(fā)電項(xiàng)目建設(shè)可行性研究報(bào)告
- 紡織合同范本模板
- 海關(guān)招聘合同范本
- 產(chǎn)品包裝協(xié)議書
- 麗水市2024年浙江云和縣機(jī)關(guān)事業(yè)單位集中招聘編外用工25人筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 醫(yī)院ca管理辦法
- 樣品測試管理辦法
- 2025年國際法考試試題及答案
- 面癱中醫(yī)治療課件
- 2024四川輕化工大學(xué)輔導(dǎo)員招聘筆試真題
- 2025年輔警筆試試題+答案
- 湖北工程變更管理辦法
- 氣管狹窄護(hù)理課件
- 鄉(xiāng)鎮(zhèn)辦安全生產(chǎn)培訓(xùn)課件
- 2025年法律職業(yè)倫理歷年試題及答案
- 大學(xué)生心理健康論文情緒管理
評論
0/150
提交評論