版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省深圳市羅湖區(qū)羅湖中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.袋中裝有除顏色外其他完全相同的4個小球,其中3個紅色,一個白色,從袋中任意地摸出兩個球,這兩個球顏色相同的概率是()A. B. C. D.2.如圖,在△ABC中,∠B=80°,∠C=40°,直線l平行于BC.現(xiàn)將直線l繞點A逆時針旋轉(zhuǎn),所得直線分別交邊AB和AC于點M、N,若△AMN與△ABC相似,則旋轉(zhuǎn)角為()A.20° B.40° C.60° D.80°3.下列方程中,有兩個不相等的實數(shù)根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=04.如圖所示,是二次函數(shù)y=ax2﹣bx+2的大致圖象,則函數(shù)y=﹣ax+b的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,⊙O是正方形ABCD與正六邊形AEFCGH的外接圓.則正方形ABCD與正六邊形AEFCGH的周長之比為()A.∶3 B.∶1 C.∶ D.1∶6.如圖,在中,,且DE分別交AB,AC于點D,E,若,則△和△的面積之比等于()A. B. C. D.7.若二次根式在實數(shù)范圍內(nèi)有意義,則x的取值范圍是A.x≤ B.x≥ C.x≤ D.x≥8.在同一平面直角坐標(biāo)系中,函數(shù)y=x﹣1與函數(shù)的圖象可能是A. B. C. D.9.已知二次函數(shù)的圖像與x軸沒有交點,則()A. B. C. D.10.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈送一件,全組共互增了182件.如果全組共有x名同學(xué),則根據(jù)題意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×211.將拋物線向右平移一個單位,向上平移2個單位得到拋物線A. B. C. D.12.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=3二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中有兩點和,以原點為位似中心,相似比為,把線段縮短為線段,其中點與點對應(yīng),點與點對應(yīng),且在y軸右側(cè),則點的坐標(biāo)為________.14.如圖,已知A(5,0),B(4,4),以O(shè)A、AB為邊作?OABC,若一個反比例函數(shù)的圖象經(jīng)過C點,則這個函數(shù)的解析式為_____.15.某同學(xué)用描點法y=ax2+bx+c的圖象時,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算錯了其中一個y值,則這個錯誤的y值是_______.16.如圖,在⊙O中,弦AB,CD相交于點P,∠A=42°,∠APD=77°,則∠B=_____°.17.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.18.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側(cè)面展開圖的圓心角度數(shù)是_____.三、解答題(共78分)19.(8分)如圖,在邊長為4的正方形ABCD中,∠EDF=90°,點E在邊AB上且不與點A重合,點F在邊BC的延長線上,DE交AC于Q,連接EF交AC于P(1)求證:△ADE≌△CDF;(2)求證:PE=PF;(3)當(dāng)AE=1時,求PQ的長.20.(8分)隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了多少名學(xué)生?在扇形統(tǒng)計圖中,表示""的扇形圓心角的度數(shù)是多少;(2)將條形統(tǒng)計圖補充完整;(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生大約有多少名?(4)某天甲、乙兩名同學(xué)都想從“微信"、""、“電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.21.(8分)如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點與點在同一水平面上,與在同一平面內(nèi).某數(shù)學(xué)興趣小組為了測量樓的高度,在坡底處測得樓頂?shù)难鼋菫椋缓笱仄旅嫔闲辛嗣椎竭_點處,此時在處測得樓頂?shù)难鼋菫?,求樓的高?(結(jié)果保留整數(shù))(參考數(shù))22.(10分)如圖,在矩形ABCD中,E是邊CD的中點,點M是邊AD上一點(與點A,D不重合),射線ME與BC的延長線交于點N.(1)求證:△MDE≌△NCE;(2)過點E作EF//CB交BM于點F,當(dāng)MB=MN時,求證:AM=EF.23.(10分)問題背景:如圖1設(shè)P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,求∠APB的度數(shù).小君研究這個問題的思路是:將△ACP繞點A逆時針旋轉(zhuǎn)60°得到△ABP',易證:△APP'是等邊三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.簡單應(yīng)用:(1)如圖2,在等腰直角△ABC中,∠ACB=90°.P為△ABC內(nèi)一點,且PA=5,PB=3,PC=2,則∠BPC=°.(2)如圖3,在等邊△ABC中,P為△ABC內(nèi)一點,且PA=5,PB=12,∠APB=150°,則PC=.拓展廷伸:(3)如圖4,∠ABC=∠ADC=90°,AB=BC.求證:BD=AD+DC.(4)若圖4中的等腰直角△ABC與Rt△ADC在同側(cè)如圖5,若AD=2,DC=4,請直接寫出BD的長.24.(10分)某學(xué)校為了解學(xué)生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學(xué)生(每人必選且只能選修一項)進行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:(1)本次調(diào)查的學(xué)生共有人;在扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是;(2)將條形統(tǒng)計圖補充完整;(3)在被調(diào)查選修古典舞的學(xué)生中有4名團員,其中有1名男生和3名女生,學(xué)校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.25.(12分)如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,并與軸交于點,點是對稱軸與軸的交點.(1)求拋物線的解析式;(2)如圖①所示,是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,求的面積的最大值;(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標(biāo);并探究:在軸上是否存在點,使?若存在,求點的坐標(biāo);若不存在,請說明理由.26.如圖,在平面直角坐標(biāo)系中,點B在x軸上,∠ABO=90°,AB=BO,直線y=﹣3x﹣4與反比例函數(shù)y=交于點A,交y軸于C點.(1)求k的值;(2)點D與點O關(guān)于AB對稱,連接AD、CD,證明△ACD是直角三角形;(3)在(2)的條件下,點E在反比例函數(shù)圖象上,若S△OCE=S△OCD,求點E的坐標(biāo).
參考答案一、選擇題(每題4分,共48分)1、A【分析】用樹形圖法確定所有情況和所需情況,然后用概率公式解答即可.【詳解】解:畫樹狀圖如下:則總共有12種情況,其中有6種情況是兩個球顏色相同的,故其概率為.故答案為A.【點睛】本題考查畫樹形圖和概率公式,其中根據(jù)題意畫出樹形圖是解答本題的關(guān)鍵.2、B【解析】因為旋轉(zhuǎn)后得到△AMN與△ABC相似,則∠AMN=∠C=40°,因為旋轉(zhuǎn)前∠AMN=80°,所以旋轉(zhuǎn)角度為40°,故選B.3、A【分析】逐項計算方程的判別式,根據(jù)根的判別式進行判斷即可.【詳解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故該方程有兩個不相等的實數(shù)根,故A符合題意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故該方程無實數(shù)根,故B不符合題意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故該方程無實數(shù)根,故C不符合題意;在x2+2x+1=0中,△=22﹣4×1×1=0,故該方程有兩個相等的實數(shù)根,故D不符合題意;故選:A.【點睛】本題考查根的判別式,解題的關(guān)鍵是記住判別式,△>0有兩個不相等實數(shù)根,△=0有兩個相等實數(shù)根,△<0沒有實數(shù)根,屬于中考常考題型.4、A【解析】解:∵二次函數(shù)y=ax2﹣bx+2的圖象開口向上,∴a>0;∵對稱軸x=﹣<0,∴b<0;因此﹣a<0,b<0∴綜上所述,函數(shù)y=﹣ax+b的圖象過二、三、四象限.即函數(shù)y=﹣ax+b的圖象不經(jīng)過第一象限.故選A.5、A【分析】計算出在半徑為R的圓中,內(nèi)接正方形和內(nèi)接正六邊形的邊長即可求出.【詳解】解:設(shè)此圓的半徑為R,則它的內(nèi)接正方形的邊長為R,它的內(nèi)接正六邊形的邊長為R,內(nèi)接正方形和內(nèi)接正六邊形的周長比為:4R:6R=∶1.故選:A.【點睛】本題考查了正多邊形和圓,找出內(nèi)接正方形與內(nèi)接正六邊形的邊長關(guān)系,是解決問題的關(guān)鍵.6、B【解析】由DE∥BC,利用“兩直線平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,進而可得出△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方即可求出結(jié)論.【詳解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.7、A【分析】根據(jù)二次根式被開方數(shù)為非負(fù)數(shù)即可求解.【詳解】依題意得2-4x≥0解得x≤故選A.【點睛】此題主要考查二次根式有意義的條件,解題的關(guān)鍵是熟知二次根式被開方數(shù)為非負(fù)數(shù).8、C【解析】試題分析:一次函數(shù)的圖象有四種情況:①當(dāng),時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當(dāng),時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當(dāng),時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當(dāng),時,函數(shù)的圖象經(jīng)過第二、三、四象限.因此,∵函數(shù)y=x﹣1的,,∴它的圖象經(jīng)過第一、三、四象限.根據(jù)反比例函數(shù)的性質(zhì):當(dāng)時,圖象分別位于第一、三象限;當(dāng)時,圖象分別位于第二、四象限.∵反比例函數(shù)的系數(shù),∴圖象兩個分支分別位于第一、三象限.綜上所述,符合上述條件的選項是C.故選C.9、C【分析】若二次函數(shù)的圖像與x軸沒有交點,則,解出關(guān)于m、n的不等式,再分別判斷即可;【詳解】解:與軸無交點,,,故A、B錯誤;同理:;故選C.【點睛】本題主要考查了拋物線與坐標(biāo)軸的交點,掌握拋物線與坐標(biāo)軸的交點是解題的關(guān)鍵.10、C【解析】試題分析:先求每名同學(xué)贈的標(biāo)本,再求x名同學(xué)贈的標(biāo)本,而已知全組共互贈了182件,故根據(jù)等量關(guān)系可得到方程.每名同學(xué)所贈的標(biāo)本為:(x-1)件,那么x名同學(xué)共贈:x(x-1)件,根據(jù)題意可列方程:x(x-1)=182,故選C.考點:本題考查的是根據(jù)實際問題列一元二次方程點評:找到關(guān)鍵描述語,找到等量關(guān)系,然后準(zhǔn)確的列出方程是解答本題的關(guān)鍵.11、B【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線向右平移一個單位所得直線解析式為:;再向上平移2個單位為:,即.故選B.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.12、D【分析】利用因式分解法求解可得.【詳解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,則x﹣5=0或2x﹣6=0,解得x=5或x=3,故選:D.【點睛】本題考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)位似變換的性質(zhì)計算即可.【詳解】∵以原點O為位似中心,相似比為,把線段AB縮短為線段CD,B(6,3),∴點D的坐標(biāo)為:,即,故答案為:.【點睛】本題考查的是位似變換,在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.14、y=﹣【分析】直接利用平行四邊形的性質(zhì)得出C點坐標(biāo),再利用反比例函數(shù)解析式的求法得出答案.【詳解】解:∵A(5,0),B(4,4),以O(shè)A、AB為邊作?OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一個反比例函數(shù)的圖象經(jīng)過C點,則這個函數(shù)的解析式為:y=﹣.故答案為:y=﹣.【點睛】本題主要考查的是平行四邊形的性質(zhì)和反比例函數(shù)解析式的求法,將反比例函數(shù)上的點帶入解析式中即可求解.15、﹣1.【解析】根據(jù)關(guān)于對稱軸對稱的自變量對應(yīng)的函數(shù)值相等,可得答案.解:由函數(shù)圖象關(guān)于對稱軸對稱,得(﹣1,﹣2),(0,1),(1,2)在函數(shù)圖象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函數(shù)解析式,得,解得,,函數(shù)解析式為y=﹣3x2+1x=2時y=﹣11,故答案為﹣1.“點睛”本題考查了二次函數(shù)圖象,利用函數(shù)圖象關(guān)于對稱軸對稱是解題關(guān)鍵.16、35°【分析】由同弧所對的圓周角相等求得∠A=∠D=42°,根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B的大?。驹斀狻俊咄∷鶎Φ膱A周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD?∠D=35°,故答案為:35°.【點睛】此題考查圓周角定理及其推論,解題關(guān)鍵明確三角形內(nèi)角與外角的關(guān)系.17、1【分析】根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負(fù).【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負(fù)值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.18、【分析】利用圓錐的底面周長和母線長求得圓錐的側(cè)面積,然后再利用圓錐的面積的計算方法求得側(cè)面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側(cè)面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關(guān)鍵在于求得圓錐的側(cè)面積三、解答題(共78分)19、(1)見解析;(2)見解析;(3)【分析】(1)根據(jù)ASA證明即可.(2)作FH∥AB交AC的延長線于H,由“AAS”可證△APE≌△HPF,可得PE=PF;(3)如圖2,先根據(jù)平行線分線段成比例定理表示,可得AQ的長,再計算AH的長,根據(jù)(2)中的全等可得AP=PH,由線段的差可得結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=∠ADC=90°,∴∠ADE+∠EDC=90°∵∠EDF=90°∴∠EDC+∠CDF=90°∴∠ADE=∠CDF在△ADE和△CDF中,∵∴△ADE≌△CDF(ASA).(2)證明:由(1)知:△ADE≌△CDF,∴AE=CF,作FH∥AB交AC的延長線于H.∵四邊形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,在△AEP和△HFP中,∵,∴△APE≌△HPF(AAS),∴PE=PF;(3)∵AE∥CD,∴,∵AE=1,CD=4,∴,∵四邊形ABCD是正方形,∴AB=BC=4,∠B=90°,∴AC=4,∴AQ=AC=,∵AE=FH=CF=1,∴CH=,∴AH=AC+CH=4+=5,由(2)可知:△APE≌△HPF,∴AP=PH,∴AP=AH=,∴PQ=AP﹣AQ=﹣=.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題.20、(1)100;108°;(2)詳見解析;(3)600人;(4)【分析】(1)利用喜歡“電話”溝通的人數(shù)除以其所占調(diào)查總?cè)藬?shù)的百分率即可求出調(diào)查總?cè)藬?shù),然后求出喜歡“QQ”溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘360°即可求出結(jié)論;(2)用調(diào)查總?cè)藬?shù)×喜歡“短信”溝通的人數(shù)所占百分率即可求出喜歡“短信”溝通的人數(shù),然后用調(diào)查總?cè)藬?shù)減去其余“電話”、“短信”、“QQ”和“其它”溝通的人數(shù)即可求出喜歡用“微信”溝通的人數(shù),最后補全條形統(tǒng)計圖即可;(3)先求出喜歡用“微信”溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘1500即可;(4)根據(jù)題意,畫出樹狀圖,然后根據(jù)概率公式計算即可.【詳解】解:(1)調(diào)查總?cè)藬?shù)為20÷20%=100人表示""的扇形圓心角的度數(shù)是30÷100×360°=108°(2)喜歡用“短信”溝通的人數(shù)為:100×5%=5人,喜歡用“微信”溝通的人數(shù)為:100-20-5-30-5=40人,補充條形統(tǒng)計圖,如圖所示:(3)喜歡用“微信”溝通所占百分比為:∴該校共有1500名學(xué)生,估計該校最喜歡用“微信”進行溝通的學(xué)生有:人.答:該校最喜歡用“微信”進行溝通的學(xué)生有600人.(4)列出樹狀圖,如圖所示,共有9種等可能的結(jié)果,其中兩人恰好選中同一種溝通方式共有3種情況,所以甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率為:【點睛】此題考查的是條形統(tǒng)計圖、扇形統(tǒng)計圖和求概率問題,結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息并掌握畫樹狀圖和概率公式求概率是解決此題的關(guān)鍵.21、24米【分析】由i==,DE2+EC2=CD2,解得DE=5m,EC=m,過點D作DG⊥AB于G,過點C作CH⊥DG于H,則四邊形DEBG、四邊形DECH、四邊形BCHG都是矩形,證得AB=BC,設(shè)AB=BC=xm,則AG=(x-5)m,DG=(x+)m,在Rt△ADG中,=tan∠ADG,代入即可得出結(jié)果.【詳解】解:在Rt△DEC中,∵i==,,DE2+EC2=CD2,CD=10,∴DE2+(DE)2=102,解得:DE=5(m),
∴EC=m,
過點D作DG⊥AB于G,過點C作CH⊥DG于H,如圖所示:
則四邊形DEBG、四邊形DECH、四邊形BCHG都是矩形,
∵∠ACB=45°,AB⊥BC,
∴AB=BC,
設(shè)AB=BC=xm,則AG=(x-5)m,DG=(x+)m,
在Rt△ADG中,∵=tan∠ADG,,解得:x=15+5≈24,答:樓AB的高度為24米.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,通過解直角三角形得出方程是解題的關(guān)鍵.22、(1)見解析;(2)見解析.【分析】(1)由平行線的性質(zhì)得出∠DME=∠CNE,∠MDE=∠ECN,可證明△MDE≌△NCE(AAS);(2)過點M作MG⊥BN于點G,由等腰三角形的性質(zhì)得出BG=BN=BN,由中位線定理得出EF=BN,則可得出結(jié)論.【詳解】解:(1)證明:∵四邊形ABCD為矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E為CD的中點,∴DE=CE,∴△MDE≌△NCE(AAS);(2)證明:過點M作MG⊥BN于點G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四邊形ABGM為矩形,∴AM=BG=,∵EF//BN,E為DC的中點,∴F為BM的中點,∴EF=BN,∴AM=EF.【點睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),中位線定理,全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì)是解題的關(guān)鍵.23、(1)135;(2)13;(3)見解析;(4)【分析】簡單應(yīng)用:(1)先利用旋轉(zhuǎn)得出BP'=AP=5,∠PCP'=90°,CP'=CP=2,再根據(jù)勾股定理得出PP'=CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'為斜邊的直角三角形,即可得出結(jié)論;(2)同(1)的方法得出∠APP'=60°,進而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出結(jié)論;拓展廷伸:(3)先利用旋轉(zhuǎn)得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判斷出點D'在DC的延長線上,最后用勾股定理即可得出結(jié)論;(4)先利用旋轉(zhuǎn)得出BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',再判斷出點D'在AD的延長線上,最后用勾股定理即可得出結(jié)論.【詳解】解:簡單應(yīng)用:(1)如圖2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,將△ACP繞點C逆時針旋轉(zhuǎn)90°得到△CBP',連接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根據(jù)勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'為斜邊的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案為:135;(2)如圖3,∵△ABC是等邊三角形,∴∠BAC=60°,AC=AB,將△ACP繞點A逆時針旋轉(zhuǎn)60°得到△ABP',連接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等邊三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根據(jù)勾股定理得,BP'==13,∴CP=13,故答案為:13;拓展廷伸:(3)如圖4,在△ABC中,∠ABC=90°,AB=BC,將△ABD繞點B順時針旋轉(zhuǎn)90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴點D'在DC的延長線上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=BD,∴BD=CD+AD;(4)如圖5,在△ABC中,∠ABC=90°,AB=BC,連接BD,將△CBD繞點B順時針旋轉(zhuǎn)90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB與CD的交點記作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴點D'在AD的延長線上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=DD'=.【點睛】本題主要考查了三角形的旋轉(zhuǎn)變換,涉及了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理,靈活的利用三角形的旋轉(zhuǎn)變換添加輔助線是解題的關(guān)鍵.24、(1)200、144;(2)補全圖形見解析;(3)被選中的2人恰好是1男1女的概率.【分析】(1)由A活動的人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以B活動人數(shù)所占比例即可得;
(2)用總?cè)藬?shù)減去其它活動人數(shù)求出C的人數(shù),從而補全圖形;
(3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.【詳解】(1)本次調(diào)查的學(xué)生共有30÷15%=200(人),扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是360°×=144°,故答案為200、144;(2)C活動人數(shù)為200﹣(30+80+20)=70(人),補全圖形如下:(3)畫樹狀圖為:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能情況,1男1女有6種情況,∴被選中的2人恰好是1男1女的概率.【點睛】本題考查了扇形統(tǒng)計圖,條形統(tǒng)計圖,樹狀圖等知識點,解題時注意:概率=所求情況數(shù)與總情況數(shù)之比.25、(1);(2)當(dāng)時,最大值為;(3)存在,點坐標(biāo)為,理由見解析【分析】(1)利用待定系數(shù)法可求出二次函數(shù)的解析式;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游民宿安全聯(lián)席會商制度
- 探索適合企業(yè)特點的人員績效考評制度
- 彩超室不良事件報告制度
- 建立多維度的家校協(xié)同評估制度
- 小金庫治理承諾制度
- 廣東交通職業(yè)技術(shù)學(xué)院《舞龍舞獅》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海民遠職業(yè)技術(shù)學(xué)院《數(shù)字繪畫訓(xùn)練Ⅱ》2023-2024學(xué)年第二學(xué)期期末試卷
- 綿陽職業(yè)技術(shù)學(xué)院《寵物醫(yī)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北汽車工業(yè)學(xué)院科技學(xué)院《測繪工程監(jiān)理學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古招標(biāo)計劃提前發(fā)布制度
- 云南師大附中2026屆高三月考試卷(七)地理
- 通信管道施工質(zhì)量控制方案
- 仁愛科普版(2024)八年級上冊英語Unit1~Unit6單元話題作文練習(xí)題(含答案+范文)
- 安徽寧馬投資有限責(zé)任公司2025年招聘派遣制工作人員考試筆試模擬試題及答案解析
- 2024-2025學(xué)年云南省昆明市五華區(qū)高一上學(xué)期期末質(zhì)量監(jiān)測歷史試題(解析版)
- 建筑坍塌應(yīng)急救援規(guī)程
- 胰腺常見囊性腫瘤的CT診斷
- 房屋尾款交付合同(標(biāo)準(zhǔn)版)
- 檢測設(shè)備集成優(yōu)化方案
- 2025數(shù)據(jù)中心液冷系統(tǒng)技術(shù)規(guī)程
- 2021-2025年河南省中考英語試題分類匯編:短文選詞填空(學(xué)生版)
評論
0/150
提交評論